内部的智能温度控制电路芯片
发布时间:2020/10/17 18:19:38 访问次数:767
芯片内部的高精度电压基准源、误差放大器和电阻分压网络确保电池端调制电压的精度在1%以内,满足锂离子电池和锂聚合物电池的要求。当输入电压低于欠压锁定阈值电压或者输入电压低于电池电压时,充电器进入低功耗的睡眠模式,此时电池端消耗的电流小于 2uA。
TP4056 内部的智能温度控制电路在芯片的结温超过125℃时自动降低充电电流,这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心因为过热而损坏芯片或者外部元器件。
用户在设计充电电流时,可以不用考虑最坏情况,而只是根据典型情况进行设计因为在最坏情况下,TP4056会自动减小充电电流。
如果将使能输入端 CE接低电平,充电器停止充电。
最大充电电流:1A
无需 MOSFET、检测电阻器和隔离二极管
智能热调节功能可实现充电速率最大化
智能再充电功能
预充电压:4.2V±1%
C/10 充电终止
待机电流 40uA
BAT 超低自耗电 1uA
2.9V 涓流充电阈值
单独的充电、结束指示灯控制信号
封装形式:SOP8(带散热底座)
施加较小的栅极电压(Vgs
在导通状态下,漏极电流(Ids)与漏极电压(Vds)线性增加,直到(Vds = Vgs = Vdsat),之后漏极电流保持恒定。如果漏极电压进一步增加到该值(Vds > Vdsat),此时晶体管可能会产生其最大电流限制,该晶体管将处于饱和状态。
举例来说,如果你不停地消耗大量的食物,根据你的体力限制,你能做的工作是有最大限度的,也就是说,你消耗再多的食物都被认为是浪费了。晶体管也受到它的物理限制,如它的特征尺寸(W和L)和它的掺杂水平(它所包含的杂质数量)的限制。
芯片内部的高精度电压基准源、误差放大器和电阻分压网络确保电池端调制电压的精度在1%以内,满足锂离子电池和锂聚合物电池的要求。当输入电压低于欠压锁定阈值电压或者输入电压低于电池电压时,充电器进入低功耗的睡眠模式,此时电池端消耗的电流小于 2uA。
TP4056 内部的智能温度控制电路在芯片的结温超过125℃时自动降低充电电流,这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心因为过热而损坏芯片或者外部元器件。
用户在设计充电电流时,可以不用考虑最坏情况,而只是根据典型情况进行设计因为在最坏情况下,TP4056会自动减小充电电流。
如果将使能输入端 CE接低电平,充电器停止充电。
最大充电电流:1A
无需 MOSFET、检测电阻器和隔离二极管
智能热调节功能可实现充电速率最大化
智能再充电功能
预充电压:4.2V±1%
C/10 充电终止
待机电流 40uA
BAT 超低自耗电 1uA
2.9V 涓流充电阈值
单独的充电、结束指示灯控制信号
封装形式:SOP8(带散热底座)
施加较小的栅极电压(Vgs
在导通状态下,漏极电流(Ids)与漏极电压(Vds)线性增加,直到(Vds = Vgs = Vdsat),之后漏极电流保持恒定。如果漏极电压进一步增加到该值(Vds > Vdsat),此时晶体管可能会产生其最大电流限制,该晶体管将处于饱和状态。
举例来说,如果你不停地消耗大量的食物,根据你的体力限制,你能做的工作是有最大限度的,也就是说,你消耗再多的食物都被认为是浪费了。晶体管也受到它的物理限制,如它的特征尺寸(W和L)和它的掺杂水平(它所包含的杂质数量)的限制。
上一篇:漏极开路输出外部抗混叠滤波器
上一篇:开关直流转换器和线性稳压器