位置:51电子网 » 技术资料 » 嵌入式系统

总线实现对低频收发芯片PJF7992的控制

发布时间:2020/9/20 0:32:40 访问次数:1138

基站主控芯片采用F RE E SC A L E 公司生产的MC9S08DZ60,它可以通过SPI 串行总线对射频接收芯片MC33596 参数进行配置与通信。MC9S08DZ60 内部集成了2 个SCI(LIN)模块,可通过一路LIN 总线实现对低频收发芯片PJF7992 的控制,另一路LIN总线实现对发动机电控单元(ECU)与门控相关执行机构传送命令。在汽车安全防盗系统中加入LIN总线接。

多输入动态mux复杂时钟、IP模块多内部输出时钟等复杂的时钟结构,采用分析时钟框图及基于Innovus工具从网表中提取时钟结构的分析方式进行时钟结构上的详细梳理,提出针对时钟结构分析及clock spec的优化方法。

在一个超大规模的16 nm top design上基于优化后的clock spec进行CTS,并结合multi-tap的clock tree做法,从得到的结果可以发现在run time、clock latency等方面都有较大的提升,能够满足项目要求的时钟长度等要求,有效避免block接口的时序冲突。

高精度频率稳定技术需要价格昂贵,体积较大的高稳腔、吸收池等作为频率参考,并通过复杂的电学/光学反馈技术,限制了其在光纤传感、激光雷达等工业领域的应用。低成本、高鲁棒性的光纤激光器噪声抑制技术研究,具有重要的意义。

对光纤激光器谐振腔等效热膨胀系数的控制,实现腔内热光效应的精细调控,在激光腔内部构建激光器频率的自反馈机制。通过理论推导和实验研究,实现20dB的光纤激光器低频频率噪声抑制和热噪声极限的光纤激光输出。

研究对自反馈机制下的光纤激光器强度噪声、环境鲁棒性等性能进行全面的研究测试,证实了该技术的先进性。该研究有望有效推动单频光纤激光器在激光雷达、光纤传感等相关工业领域的应用。

从500纳米(nm)、350纳米、250纳米、180纳米、150纳米、130纳米、90纳米、65纳米、45纳米、32纳米、28纳米、22纳米、14纳米、10纳米、7纳米,一直发展到现在的5纳米,未来还有3纳米、2纳米制程出现。

集成电路的制程工艺乘以0.714即可得出下一代集成电路的制程工艺,如350纳米*0.714=249.9纳米≈250纳米,再比如7纳米*0.714=4.998纳米≈5纳米。这就是著名的登纳德缩放比例定律(Dennard scaling),该定律源于1974年Robert H. Dennard参与完成的一篇论文,定律表明,晶体管的尺寸在每一代技术中都缩小了30%(0.7倍),因此它们的面积减少了50%。这意味着电路减少了30% (0.7倍)的延迟,因此增加了约40%(1.4倍)的工作频率。最后,为了保持电场恒定,电压降低了30%,能量降低了65%,功率降低了50%。因此,在每一代技术中,晶体管密度增加一倍,电路速度提高40%,功耗保持不变。


(素材:chinaaet.如涉版权请联系删除)

基站主控芯片采用F RE E SC A L E 公司生产的MC9S08DZ60,它可以通过SPI 串行总线对射频接收芯片MC33596 参数进行配置与通信。MC9S08DZ60 内部集成了2 个SCI(LIN)模块,可通过一路LIN 总线实现对低频收发芯片PJF7992 的控制,另一路LIN总线实现对发动机电控单元(ECU)与门控相关执行机构传送命令。在汽车安全防盗系统中加入LIN总线接。

多输入动态mux复杂时钟、IP模块多内部输出时钟等复杂的时钟结构,采用分析时钟框图及基于Innovus工具从网表中提取时钟结构的分析方式进行时钟结构上的详细梳理,提出针对时钟结构分析及clock spec的优化方法。

在一个超大规模的16 nm top design上基于优化后的clock spec进行CTS,并结合multi-tap的clock tree做法,从得到的结果可以发现在run time、clock latency等方面都有较大的提升,能够满足项目要求的时钟长度等要求,有效避免block接口的时序冲突。

高精度频率稳定技术需要价格昂贵,体积较大的高稳腔、吸收池等作为频率参考,并通过复杂的电学/光学反馈技术,限制了其在光纤传感、激光雷达等工业领域的应用。低成本、高鲁棒性的光纤激光器噪声抑制技术研究,具有重要的意义。

对光纤激光器谐振腔等效热膨胀系数的控制,实现腔内热光效应的精细调控,在激光腔内部构建激光器频率的自反馈机制。通过理论推导和实验研究,实现20dB的光纤激光器低频频率噪声抑制和热噪声极限的光纤激光输出。

研究对自反馈机制下的光纤激光器强度噪声、环境鲁棒性等性能进行全面的研究测试,证实了该技术的先进性。该研究有望有效推动单频光纤激光器在激光雷达、光纤传感等相关工业领域的应用。

从500纳米(nm)、350纳米、250纳米、180纳米、150纳米、130纳米、90纳米、65纳米、45纳米、32纳米、28纳米、22纳米、14纳米、10纳米、7纳米,一直发展到现在的5纳米,未来还有3纳米、2纳米制程出现。

集成电路的制程工艺乘以0.714即可得出下一代集成电路的制程工艺,如350纳米*0.714=249.9纳米≈250纳米,再比如7纳米*0.714=4.998纳米≈5纳米。这就是著名的登纳德缩放比例定律(Dennard scaling),该定律源于1974年Robert H. Dennard参与完成的一篇论文,定律表明,晶体管的尺寸在每一代技术中都缩小了30%(0.7倍),因此它们的面积减少了50%。这意味着电路减少了30% (0.7倍)的延迟,因此增加了约40%(1.4倍)的工作频率。最后,为了保持电场恒定,电压降低了30%,能量降低了65%,功率降低了50%。因此,在每一代技术中,晶体管密度增加一倍,电路速度提高40%,功耗保持不变。


(素材:chinaaet.如涉版权请联系删除)

热门点击

 

推荐技术资料

DFRobot—玩的就是
    如果说新车间的特点是“灵动”,FQPF12N60C那么... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!