硅晶圆上的芯片集成式扇出封装技术
发布时间:2020/8/22 23:43:22 访问次数:1775
3D SoIC后端服务后,还开发了主要用于超级计算AI芯片的InFO_SoW(晶圆上系统)技术,并有望在两年内以InFO(集成式扇出封装技术)衍生的工艺开始量产。
台积电已与Cerebras达成合作,InFO衍生的工艺开始量产意味着台积电可能在两年内开始商业化生产专用于超级计算机的AI芯片。这款从去年推出就备受瞩目的超级AI芯片若进入商业化,机器学习或将迈入新台阶。
制造“超级”AI芯片,面临互连难题,台积电计划生产的AI芯片,其实是由一家初创人工智能公司Cerebras Systems在去年推出的世界上最大的半导体芯片,该芯片拥有1.2万亿个晶体管,40万个核心,面积为46225平方毫米,片上内存18G,是目前面积最大芯片英伟达GPU的56.7倍,并多78个计算内核。
芯片是目前唯一的万亿级晶体管晶圆级处理器,基于该芯片推出的CS-1系统可以提供比其他系统更少的空间和功耗的计算性能,相当于标准数据中心机架的三分之一,同时取代对数十万个GPU的需求。
Cerebras推出这款AI芯片,主要是针对深度学习的工作负载。当今人工智能的发展受训练模型所需花费时间的限制,如何缩短训练时间是整个行业共同面临的问题。目前大多数芯片都是在12英寸的硅晶圆上制成的芯片的集合,并在芯片工厂批量加工,但Cerebras芯片却是采用互连的方法将所有内核放在同一块硅晶圆上,使得数据移动快速且低功耗。
Cerebras将所需的数据存储在处理器芯片上而非单独的存储芯片上,这也就意味着,该款芯片能将原本需要几个月的训练缩短到几分钟,推理能力也更强。
改进都指向制造出尽可能大的芯片。但芯片越大,可能出现的缺陷也就越多。这就要求在制造该款芯片的过程中,尽可能解决一些难题。光刻工具是旨在将其特定的图案一遍又一遍地投射到较小的矩形框内,由于在晶圆的不同位置刻蚀不同图案的成本和难度,限制了在同一个晶圆上构建不同的系统。
对于这款超级计算芯片而言,最大的挑战在于芯片互连。这要求芯片制造商能够在每个芯片周围留下空白硅的窄边,这一窄边称为划线。基于这一难题,Cerebras与台积电展开了合作。
台积电先进封装技术有望实现“超级”AI芯片量产,在台积电与Cerebras的合作中,其集成式扇出封装技术(InFO)发挥着重要作用。
扇出型封装技术使芯片厚度减少20%,成本降低30%,同时互连功耗降低15%。以较小的功耗实现巨大的连接性,这正是超级计算AI芯片所需解决的问题。
扇出型封装技术比扇入型封装先进,但考虑到安全性等因素,目前市场上只有手机应用处理器使用扇出型封装,CPU和逻辑IC等依然使用扇入型封装。基于其成本与厚度优势,可能会有越来越多的芯片采用扇出型封装技术。台积电与Cerebras的合作,也为扇出型封装技术开拓了新市场。
AI芯片就算实现量产也无法在短时间内大量普及,但其学习能力和推理能力确实值得我们期待,这似乎是赛博时代机器走向人类的一大步,如同我们对5G世界的想象一样。
(素材来源:21ic.如涉版权请联系删除。特别感谢)
3D SoIC后端服务后,还开发了主要用于超级计算AI芯片的InFO_SoW(晶圆上系统)技术,并有望在两年内以InFO(集成式扇出封装技术)衍生的工艺开始量产。
台积电已与Cerebras达成合作,InFO衍生的工艺开始量产意味着台积电可能在两年内开始商业化生产专用于超级计算机的AI芯片。这款从去年推出就备受瞩目的超级AI芯片若进入商业化,机器学习或将迈入新台阶。
制造“超级”AI芯片,面临互连难题,台积电计划生产的AI芯片,其实是由一家初创人工智能公司Cerebras Systems在去年推出的世界上最大的半导体芯片,该芯片拥有1.2万亿个晶体管,40万个核心,面积为46225平方毫米,片上内存18G,是目前面积最大芯片英伟达GPU的56.7倍,并多78个计算内核。
芯片是目前唯一的万亿级晶体管晶圆级处理器,基于该芯片推出的CS-1系统可以提供比其他系统更少的空间和功耗的计算性能,相当于标准数据中心机架的三分之一,同时取代对数十万个GPU的需求。
Cerebras推出这款AI芯片,主要是针对深度学习的工作负载。当今人工智能的发展受训练模型所需花费时间的限制,如何缩短训练时间是整个行业共同面临的问题。目前大多数芯片都是在12英寸的硅晶圆上制成的芯片的集合,并在芯片工厂批量加工,但Cerebras芯片却是采用互连的方法将所有内核放在同一块硅晶圆上,使得数据移动快速且低功耗。
Cerebras将所需的数据存储在处理器芯片上而非单独的存储芯片上,这也就意味着,该款芯片能将原本需要几个月的训练缩短到几分钟,推理能力也更强。
改进都指向制造出尽可能大的芯片。但芯片越大,可能出现的缺陷也就越多。这就要求在制造该款芯片的过程中,尽可能解决一些难题。光刻工具是旨在将其特定的图案一遍又一遍地投射到较小的矩形框内,由于在晶圆的不同位置刻蚀不同图案的成本和难度,限制了在同一个晶圆上构建不同的系统。
对于这款超级计算芯片而言,最大的挑战在于芯片互连。这要求芯片制造商能够在每个芯片周围留下空白硅的窄边,这一窄边称为划线。基于这一难题,Cerebras与台积电展开了合作。
台积电先进封装技术有望实现“超级”AI芯片量产,在台积电与Cerebras的合作中,其集成式扇出封装技术(InFO)发挥着重要作用。
扇出型封装技术使芯片厚度减少20%,成本降低30%,同时互连功耗降低15%。以较小的功耗实现巨大的连接性,这正是超级计算AI芯片所需解决的问题。
扇出型封装技术比扇入型封装先进,但考虑到安全性等因素,目前市场上只有手机应用处理器使用扇出型封装,CPU和逻辑IC等依然使用扇入型封装。基于其成本与厚度优势,可能会有越来越多的芯片采用扇出型封装技术。台积电与Cerebras的合作,也为扇出型封装技术开拓了新市场。
AI芯片就算实现量产也无法在短时间内大量普及,但其学习能力和推理能力确实值得我们期待,这似乎是赛博时代机器走向人类的一大步,如同我们对5G世界的想象一样。
(素材来源:21ic.如涉版权请联系删除。特别感谢)
上一篇:栅极驱动电路GaN器件
上一篇:方波控制型和正弦波控制
热门点击
- 增强移动宽带和低时延
- 二极管不控整流电路
- LOF系列电源的紧凑性和高性能
- 电气特性的薄膜电容器规格
- 多电芯的降压-升压电池充电器
- 数据传输延迟和更高的带宽
- 机械式继电器可编程逻辑控制器
- 高压边和低压边的脉冲宽度之差
- 功率晶体管高线性度和效率优化
- NIST平台固件保护恢复
推荐技术资料
- 循线机器人是机器人入门和
- 循线机器人是机器人入门和比赛最常用的控制方式,E48S... [详细]