光电式坐标传感器的设计--位移传感器与控制技术
发布时间:2008/5/29 0:00:00 访问次数:357
小区域坐标测量技术有着重要的工程应用价值,坐标传感器是这一领域的关键部件,采用光电元件设计是因为以其高精度、高分辨率、大动态范围,利用光敏元件上的光电流随光强变动而变化这一现象实现几何增量,设计成光电传感器,可广泛地应用于静态测量、动态测量及自动化控制等领域。为了满足实际工程的需要,小区域坐标测量技术正逐步受到重视,但是目前关于传感器应用的文献中,对此方面论述的不多。本文就传感器的工作原理、电路设计、及其应用和检测信息的处理方法进行了论述。
1、光电传感器工作原理
光电传感器的基本转换原理是将被测量参数转换成光信号的变化,然后将光信号作用于光电元件转换成电信号的输出。常用的光电传感器是采用发光二极管作为光源,光源经过透镜聚焦于空间某一点。如果在该点有障碍物,光就照不到光敏二极管上,电路处于偏置状态,pn结截止,反向电流很小。当没有障碍物遮挡时,光照到光敏二极管上时,pn结附近产生电子——空穴对,并在外.电场和内电场的共同作用下,漂移过pn结,产生光电流。此时,光电流与光照强度成正比,光敏二极管处于导通状态。
具体方法是在光源侧使用发光二极管,在受光侧使用光敏二极管,并将信号处理电路集成制作在一块芯片上。它的特点是体积小,可靠性高,工作电源电压范围宽,接口电路的复杂程度大幅度减少,可直接与ttl,lsttl和cmls电路芯片连接。
2、光电传感器测量位移和方向的工作原理
2.1 传感器的结构设计
如果将被测旋转圆盘置于光电断续器的发光与受光侧之间,圆盘上有许多狭缝,圆盘旋转,光源发出的光间隔地被狭缝遮挡,受光侧得到断续的强光和弱光信号。如图1所示,若旋转圆盘没有旋转,光路检测的光束没有被遮挡,测量电路中,x光敏二极管上输出电压波形,y光敏二极管上的输出电压波形是相同的,相位是相差π/2的。若圆盘旋转,双输出型的输出电压波形如图2所示,(仅画出q1的时序图,q2的时序图道理一样)圆盘转动方向若向左,q2输出电压相位落后被屏蔽;反之,圆盘向右旋转,q1输出电压相位超落后被屏蔽。因此,两个输出电压的相位关系反映圆盘的旋转方向,圆盘的位移可以通过q1,q2输出脉冲个数的代数和得到。
2.2 传感器的电路设计
x光敏二极管与y光敏二极管在相位上相差π/2,所以它们在光电元件上取得的信号必是相差π/2。当圆盘作正向转动时, x信号超前y信号。因为电路比较复杂,采用美国lattice半导体公司推出的ispexpxrt软件对cpld器件进行硬件编程,如图3所示电路图是基于cpld设计的。或门c1产生的信号作为d锁存器q1的置位端只许x产生的正脉冲通过,而d锁存器q2因为c1作用时y信号尚在低电平,信号被屏蔽,q2输出低电平,门电路在加减计数器中作加法运算。当圆盘作反方向转动时,则y产生的负值信号超前x产生的信号,或门c1产生的信号作为d锁存器q2的置位端只让y产生的负脉冲通过,而d锁存器q1因为c1作用时x信号尚在低电平,信号被屏蔽,q1输出低电平,门电路在可逆计数器中作减法运算。这样就完成了辨向过程。out0是输出,out1是进位,z是控制端输入。工作原理图如图4所示。
3、光电式坐标传感器的结构设计及坐标算法
3.1 结构设计
在实际的设计过程中,首先根据需要设计传感器的测量精度及范围。精度可以通过计算圆盘上的狭缝密度完成,传感器圆盘的形状及尺寸大小由测量范围来确定,整个传感器系统结构框图如图5所示。
测量结构如图6所示,由四个光敏二极管(元件1、2、4、6)、两个光源(发光二极管3、5)、位移圆盘7、方向圆盘9及传动轴8组成。将传感器垂直配置,分别代表位移z和φ移动方向 ,组成一个二维传感器。
3.2 坐标算法
当被测物坐标发生时,圆盘7转动,光敏二极管4和光敏二极管6通道的信号发生变化,通过接口电路自动传输到计算机里,计算机自动对输入通道的信号进行数据采集。如果前进或者后退的角度发生变化,位移圆盘9角度也随着发生变化,通过传动轴转动带动方向圆盘产生转动,使得圆盘9上的狭缝通断光敏二极管上的光照,发出与前进或后退相应的电脉冲信号,通过接口电路自动传输到计算机里,对输入通道的信号进行数据采集。并将采集的数据进行储存,形成数据库,以备计算机通过数据计算确定自身的坐标位置,并通过相应接口进行数据输出。相对坐标xn 、yn 计算公式如下:
xn=z*cos yn =z*sin
为了确保测量精度,计算机的采样时间不能太大,应该接近光电传感器的反映时间,最好同步,或者成倍数关系。
3.3 坐标与电压的转换
根据光——电转换原理,输出的电压变化规律也正好是周期变化,变化的灵敏度与狭缝之间的距离有关,狭缝之间的距离可以根据需要加工,但受
小区域坐标测量技术有着重要的工程应用价值,坐标传感器是这一领域的关键部件,采用光电元件设计是因为以其高精度、高分辨率、大动态范围,利用光敏元件上的光电流随光强变动而变化这一现象实现几何增量,设计成光电传感器,可广泛地应用于静态测量、动态测量及自动化控制等领域。为了满足实际工程的需要,小区域坐标测量技术正逐步受到重视,但是目前关于传感器应用的文献中,对此方面论述的不多。本文就传感器的工作原理、电路设计、及其应用和检测信息的处理方法进行了论述。
1、光电传感器工作原理
光电传感器的基本转换原理是将被测量参数转换成光信号的变化,然后将光信号作用于光电元件转换成电信号的输出。常用的光电传感器是采用发光二极管作为光源,光源经过透镜聚焦于空间某一点。如果在该点有障碍物,光就照不到光敏二极管上,电路处于偏置状态,pn结截止,反向电流很小。当没有障碍物遮挡时,光照到光敏二极管上时,pn结附近产生电子——空穴对,并在外.电场和内电场的共同作用下,漂移过pn结,产生光电流。此时,光电流与光照强度成正比,光敏二极管处于导通状态。
具体方法是在光源侧使用发光二极管,在受光侧使用光敏二极管,并将信号处理电路集成制作在一块芯片上。它的特点是体积小,可靠性高,工作电源电压范围宽,接口电路的复杂程度大幅度减少,可直接与ttl,lsttl和cmls电路芯片连接。
2、光电传感器测量位移和方向的工作原理
2.1 传感器的结构设计
如果将被测旋转圆盘置于光电断续器的发光与受光侧之间,圆盘上有许多狭缝,圆盘旋转,光源发出的光间隔地被狭缝遮挡,受光侧得到断续的强光和弱光信号。如图1所示,若旋转圆盘没有旋转,光路检测的光束没有被遮挡,测量电路中,x光敏二极管上输出电压波形,y光敏二极管上的输出电压波形是相同的,相位是相差π/2的。若圆盘旋转,双输出型的输出电压波形如图2所示,(仅画出q1的时序图,q2的时序图道理一样)圆盘转动方向若向左,q2输出电压相位落后被屏蔽;反之,圆盘向右旋转,q1输出电压相位超落后被屏蔽。因此,两个输出电压的相位关系反映圆盘的旋转方向,圆盘的位移可以通过q1,q2输出脉冲个数的代数和得到。
2.2 传感器的电路设计
x光敏二极管与y光敏二极管在相位上相差π/2,所以它们在光电元件上取得的信号必是相差π/2。当圆盘作正向转动时, x信号超前y信号。因为电路比较复杂,采用美国lattice半导体公司推出的ispexrt软件对cpld器件进行硬件编程,如图3所示电路图是基于cpld设计的。或门c1产生的信号作为d锁存器q1的置位端只许x产生的正脉冲通过,而d锁存器q2因为c1作用时y信号尚在低电平,信号被屏蔽,q2输出低电平,门电路在加减计数器中作加法运算。当圆盘作反方向转动时,则y产生的负值信号超前x产生的信号,或门c1产生的信号作为d锁存器q2的置位端只让y产生的负脉冲通过,而d锁存器q1因为c1作用时x信号尚在低电平,信号被屏蔽,q1输出低电平,门电路在可逆计数器中作减法运算。这样就完成了辨向过程。out0是输出,out1是进位,z是控制端输入。工作原理图如图4所示。
3、光电式坐标传感器的结构设计及坐标算法
3.1 结构设计
在实际的设计过程中,首先根据需要设计传感器的测量精度及范围。精度可以通过计算圆盘上的狭缝密度完成,传感器圆盘的形状及尺寸大小由测量范围来确定,整个传感器系统结构框图如图5所示。
测量结构如图6所示,由四个光敏二极管(元件1、2、4、6)、两个光源(发光二极管3、5)、位移圆盘7、方向圆盘9及传动轴8组成。将传感器垂直配置,分别代表位移z和φ移动方向 ,组成一个二维传感器。
3.2 坐标算法
当被测物坐标发生时,圆盘7转动,光敏二极管4和光敏二极管6通道的信号发生变化,通过接口电路自动传输到计算机里,计算机自动对输入通道的信号进行数据采集。如果前进或者后退的角度发生变化,位移圆盘9角度也随着发生变化,通过传动轴转动带动方向圆盘产生转动,使得圆盘9上的狭缝通断光敏二极管上的光照,发出与前进或后退相应的电脉冲信号,通过接口电路自动传输到计算机里,对输入通道的信号进行数据采集。并将采集的数据进行储存,形成数据库,以备计算机通过数据计算确定自身的坐标位置,并通过相应接口进行数据输出。相对坐标xn 、yn 计算公式如下:
xn=z*cos yn =z*sin
为了确保测量精度,计算机的采样时间不能太大,应该接近光电传感器的反映时间,最好同步,或者成倍数关系。
3.3 坐标与电压的转换
根据光——电转换原理,输出的电压变化规律也正好是周期变化,变化的灵敏度与狭缝之间的距离有关,狭缝之间的距离可以根据需要加工,但受