`timescale
发布时间:2008/5/28 0:00:00 访问次数:928
在verilog hdl 模型中,所有时延都用单位时间表述。使用`timescale编译器指令将时间单位与实际时间相关联。该指令用于定义时延的单位和时延精度。`timescale编译器指令格式为:
`timescale time_unit / time_precision
time_unit 和time_precision 由值1、10、和100以及单位s、ms、us、ns、ps和fs组成。例如:
`timescale 1ns/100ps
表示时延单位为1ns, 时延精度为100ps。`timescale 编译器指令在模块说明外部出现, 并且影响后面所有的时延值。例如:
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
//规定了上升及下降时延值。
endmodule
编译器指令定义时延以ns为单位,并且时延精度为1/10 ns(100 ps)。因此,时延值5.22对应5.2 ns, 时延6.17对应6.2 ns。如果用如下的`timescale程序指令代替上例中的编译器指令,
`timescale 10ns/1ns
那么5.22对应52ns, 6.17对应62ns。
在编译过程中,`timescale指令影响这一编译器指令后面所有模块中的时延值,直至遇到另一个`timescale指令或`resetall指令。当一个设计中的多个模块带有自身的`timescale编译指令时将发生什么?在这种情况下,模拟器总是定位在所有模块的最小时延精度上,并且所有时延都相应地换算为最小时延精度。例如,
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
endmodule
`timescale 10ns/ 1ns
module tb;
reg puta, putb;
wire geto;
initial
begin
puta = 0;
putb = 0;
#5.21 putb = 1;
#10.4 puta = 1;
#15 putb = 0;
end
andfunc af1(geto, puta, putb);
endmodule
在这个例子中,每个模块都有自身的`timescale编译器指令。`timescale编译器指令第一次应用于时延。因此,在第一个模块中,5.22对应5.2 ns, 6.17对应6.2 ns; 在第二个模块中5.21对应52 ns, 10.4对应104 ns, 15对应150 ns。如果仿真模块tb,设计中的所有模块最小时间精度为100 ps。因此,所有延迟(特别是模块tb中的延迟)将换算成精度为100 ps。延迟52 ns现在对应520*100 ps,104对应1040*100 ps,150对应1500*100 ps。更重要的是,仿真使用100 ps为时间精度。如果仿真模块andfunc,由于模块tb不是模块addfunc的子模块,模块tb中的`timescale程序指令将不再有效。
`timescale time_unit / time_precision
time_unit 和time_precision 由值1、10、和100以及单位s、ms、us、ns、ps和fs组成。例如:
`timescale 1ns/100ps
表示时延单位为1ns, 时延精度为100ps。`timescale 编译器指令在模块说明外部出现, 并且影响后面所有的时延值。例如:
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
//规定了上升及下降时延值。
endmodule
编译器指令定义时延以ns为单位,并且时延精度为1/10 ns(100 ps)。因此,时延值5.22对应5.2 ns, 时延6.17对应6.2 ns。如果用如下的`timescale程序指令代替上例中的编译器指令,
`timescale 10ns/1ns
那么5.22对应52ns, 6.17对应62ns。
在编译过程中,`timescale指令影响这一编译器指令后面所有模块中的时延值,直至遇到另一个`timescale指令或`resetall指令。当一个设计中的多个模块带有自身的`timescale编译指令时将发生什么?在这种情况下,模拟器总是定位在所有模块的最小时延精度上,并且所有时延都相应地换算为最小时延精度。例如,
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
endmodule
`timescale 10ns/ 1ns
module tb;
reg puta, putb;
wire geto;
initial
begin
puta = 0;
putb = 0;
#5.21 putb = 1;
#10.4 puta = 1;
#15 putb = 0;
end
andfunc af1(geto, puta, putb);
endmodule
在这个例子中,每个模块都有自身的`timescale编译器指令。`timescale编译器指令第一次应用于时延。因此,在第一个模块中,5.22对应5.2 ns, 6.17对应6.2 ns; 在第二个模块中5.21对应52 ns, 10.4对应104 ns, 15对应150 ns。如果仿真模块tb,设计中的所有模块最小时间精度为100 ps。因此,所有延迟(特别是模块tb中的延迟)将换算成精度为100 ps。延迟52 ns现在对应520*100 ps,104对应1040*100 ps,150对应1500*100 ps。更重要的是,仿真使用100 ps为时间精度。如果仿真模块andfunc,由于模块tb不是模块addfunc的子模块,模块tb中的`timescale程序指令将不再有效。
在verilog hdl 模型中,所有时延都用单位时间表述。使用`timescale编译器指令将时间单位与实际时间相关联。该指令用于定义时延的单位和时延精度。`timescale编译器指令格式为:
`timescale time_unit / time_precision
time_unit 和time_precision 由值1、10、和100以及单位s、ms、us、ns、ps和fs组成。例如:
`timescale 1ns/100ps
表示时延单位为1ns, 时延精度为100ps。`timescale 编译器指令在模块说明外部出现, 并且影响后面所有的时延值。例如:
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
//规定了上升及下降时延值。
endmodule
编译器指令定义时延以ns为单位,并且时延精度为1/10 ns(100 ps)。因此,时延值5.22对应5.2 ns, 时延6.17对应6.2 ns。如果用如下的`timescale程序指令代替上例中的编译器指令,
`timescale 10ns/1ns
那么5.22对应52ns, 6.17对应62ns。
在编译过程中,`timescale指令影响这一编译器指令后面所有模块中的时延值,直至遇到另一个`timescale指令或`resetall指令。当一个设计中的多个模块带有自身的`timescale编译指令时将发生什么?在这种情况下,模拟器总是定位在所有模块的最小时延精度上,并且所有时延都相应地换算为最小时延精度。例如,
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
endmodule
`timescale 10ns/ 1ns
module tb;
reg puta, putb;
wire geto;
initial
begin
puta = 0;
putb = 0;
#5.21 putb = 1;
#10.4 puta = 1;
#15 putb = 0;
end
andfunc af1(geto, puta, putb);
endmodule
在这个例子中,每个模块都有自身的`timescale编译器指令。`timescale编译器指令第一次应用于时延。因此,在第一个模块中,5.22对应5.2 ns, 6.17对应6.2 ns; 在第二个模块中5.21对应52 ns, 10.4对应104 ns, 15对应150 ns。如果仿真模块tb,设计中的所有模块最小时间精度为100 ps。因此,所有延迟(特别是模块tb中的延迟)将换算成精度为100 ps。延迟52 ns现在对应520*100 ps,104对应1040*100 ps,150对应1500*100 ps。更重要的是,仿真使用100 ps为时间精度。如果仿真模块andfunc,由于模块tb不是模块addfunc的子模块,模块tb中的`timescale程序指令将不再有效。
`timescale time_unit / time_precision
time_unit 和time_precision 由值1、10、和100以及单位s、ms、us、ns、ps和fs组成。例如:
`timescale 1ns/100ps
表示时延单位为1ns, 时延精度为100ps。`timescale 编译器指令在模块说明外部出现, 并且影响后面所有的时延值。例如:
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
//规定了上升及下降时延值。
endmodule
编译器指令定义时延以ns为单位,并且时延精度为1/10 ns(100 ps)。因此,时延值5.22对应5.2 ns, 时延6.17对应6.2 ns。如果用如下的`timescale程序指令代替上例中的编译器指令,
`timescale 10ns/1ns
那么5.22对应52ns, 6.17对应62ns。
在编译过程中,`timescale指令影响这一编译器指令后面所有模块中的时延值,直至遇到另一个`timescale指令或`resetall指令。当一个设计中的多个模块带有自身的`timescale编译指令时将发生什么?在这种情况下,模拟器总是定位在所有模块的最小时延精度上,并且所有时延都相应地换算为最小时延精度。例如,
`timescale 1ns/ 100ps
module andfunc (z, a, b);
output z;
input a, b;
and # (5.22, 6.17 ) al (z, a, b);
endmodule
`timescale 10ns/ 1ns
module tb;
reg puta, putb;
wire geto;
initial
begin
puta = 0;
putb = 0;
#5.21 putb = 1;
#10.4 puta = 1;
#15 putb = 0;
end
andfunc af1(geto, puta, putb);
endmodule
在这个例子中,每个模块都有自身的`timescale编译器指令。`timescale编译器指令第一次应用于时延。因此,在第一个模块中,5.22对应5.2 ns, 6.17对应6.2 ns; 在第二个模块中5.21对应52 ns, 10.4对应104 ns, 15对应150 ns。如果仿真模块tb,设计中的所有模块最小时间精度为100 ps。因此,所有延迟(特别是模块tb中的延迟)将换算成精度为100 ps。延迟52 ns现在对应520*100 ps,104对应1040*100 ps,150对应1500*100 ps。更重要的是,仿真使用100 ps为时间精度。如果仿真模块andfunc,由于模块tb不是模块addfunc的子模块,模块tb中的`timescale程序指令将不再有效。
上一篇:闭路电视监控系统抗干扰方法