PDH通信二次群复接器在CPLD中的实现
发布时间:2008/5/28 0:00:00 访问次数:1162
数字复接就是把两个或两个以上的支路数字信号按时分复接方式合并成单一的合路数字信号。按照各低次群时钟的情况,复接有3种方式:如果各输入支路数字信号相互同步,且与本机定时信号也同步,那么调整单元只需调整相位,这就是同步复接;如果输入支路数字信号不同步且与本机定时信号也异步,那么调整单元就要对各支路信号进行频率和相位的调整,使之成为同步信号,这就是异步复接;如果输入支路数字信号的生效瞬间相对于本机对应的定时信号是以同一标称速度出现,而速度的任何变化都限制在规定的容差范围内,这种就是准同步(pdh)复接[1],本文研究的就是基于cpld的pdh通信二次群复接器。
2 二次群复接的基本原理
二次群复接就是把4个2 048 kb/s的信号复接成1个8 448 kb/s的二次群数字信号,其原理图如图1所示。
复接器由缓冲存储器、插入控制电路、时钟发生器、分频器和复接器组成。时钟产生器提供8 448 khz时钟;分频器对8 448 khz进行4分频,以获得2 112 khz的读出时钟;缓冲存储器和插入控制电路用来进行码速调整,把标称速度相同实际有容差的4个2 048 kb/s的支路都调整到2 112 kb/s上,使他们同步;复接器是将4个已经同步的支路信号复接成1个8 448 kb/s的二次群信号[2]。
2.1 数字复接方法
数字复接方法有3种:按位复接、按码字复接、按帧复接。由于后两者所需缓冲存储器的容量较大,目前应用的很少。故本文采用按位复接,其示意图如图2所示。
图中,a,b,c,d是4个支路信号,e是复接后的二次群信号。复接过程如下:首先轮流取4个基群的第1位码,之后再轮流取第2位码,依此类推。可以看出,复接后每位码的宽度只是原来支路每位码宽度的1/4,即容量增加了4倍,基群话路信号的容量为30个话路,复接后为120路。这种方法简单易行,所需缓存器的容量最小,现有的复用设备多采用这种方式。缓冲存储器的容量由式(1)决定:
式中u为复接单位的比特数,m为被复接的基群数,这里,u=1,m=4,1 b是先写进去以便读出的存储起始量,由此可得:
可见,缓冲存储器的容量取2 b就够了[1]。
2.2 码速调整帧结构
由itu-t建议g.724推荐的准同步复接二次群帧结构如图3、图4所示。
二次群帧长为848 b,一帧分为4组,每组为212 b,这212 b的分配,4个基群相似,以第l基群为例,帧结构如图3所示。将212 b分为4组,每组53 b。第ⅰ组的1,2,3三个码位,供插入复接器帧同步码用,以f表示;然后是50 b的信息码;ⅱ,ⅲ,ⅳ组的第1位码用作标志信号,用c表示;第ⅳ组的第2个码位就是码速调整的码位,用v表示,需要插入时,就在这个位置上插入一个不带信息的脉冲,不需要插入时,这个码位仍传信息码;ⅱ、ⅲ、ⅳ组的其他位置都是信息码。4个基群的第1~3个码位复接在一起,共12位,其中前10位作为复接器的帧同步码,第ll位为告警指示,第12位作为备用。4个基群的插入标志信号码和码速调整比特,复接后又分别连在一起。具体复接帧结构图如图4所示。复帧包含的比特内容如下[1]:
(1) 帧定位10 b,表示为f11f12~f13f23,码型为1111010000;
(2) 公务2 b,其中1 b(11位)用来向对端发出告警指示;另外1 b(12位)留作国内使用;
(3) 支路信息820 b,第ⅰ组为200 b(13~212),第ⅱ组为208 b(217~424),第ⅲ组为208 b(429~636),第ⅳ组为204 b(645~848);
(4) 码速调整4 b,表示为v1,v2,v3,v4(641~644位),各基群l b,共4 b;
(5) 插入标志12 b,以c表示,填充脉冲4 b。为了使接收端能知道是否有插入及插在何处,在复接发端发出插入指令的同时需要发出插入标志信号,以告知分接器有插入
数字复接就是把两个或两个以上的支路数字信号按时分复接方式合并成单一的合路数字信号。按照各低次群时钟的情况,复接有3种方式:如果各输入支路数字信号相互同步,且与本机定时信号也同步,那么调整单元只需调整相位,这就是同步复接;如果输入支路数字信号不同步且与本机定时信号也异步,那么调整单元就要对各支路信号进行频率和相位的调整,使之成为同步信号,这就是异步复接;如果输入支路数字信号的生效瞬间相对于本机对应的定时信号是以同一标称速度出现,而速度的任何变化都限制在规定的容差范围内,这种就是准同步(pdh)复接[1],本文研究的就是基于cpld的pdh通信二次群复接器。
2 二次群复接的基本原理
二次群复接就是把4个2 048 kb/s的信号复接成1个8 448 kb/s的二次群数字信号,其原理图如图1所示。
复接器由缓冲存储器、插入控制电路、时钟发生器、分频器和复接器组成。时钟产生器提供8 448 khz时钟;分频器对8 448 khz进行4分频,以获得2 112 khz的读出时钟;缓冲存储器和插入控制电路用来进行码速调整,把标称速度相同实际有容差的4个2 048 kb/s的支路都调整到2 112 kb/s上,使他们同步;复接器是将4个已经同步的支路信号复接成1个8 448 kb/s的二次群信号[2]。
2.1 数字复接方法
数字复接方法有3种:按位复接、按码字复接、按帧复接。由于后两者所需缓冲存储器的容量较大,目前应用的很少。故本文采用按位复接,其示意图如图2所示。
图中,a,b,c,d是4个支路信号,e是复接后的二次群信号。复接过程如下:首先轮流取4个基群的第1位码,之后再轮流取第2位码,依此类推。可以看出,复接后每位码的宽度只是原来支路每位码宽度的1/4,即容量增加了4倍,基群话路信号的容量为30个话路,复接后为120路。这种方法简单易行,所需缓存器的容量最小,现有的复用设备多采用这种方式。缓冲存储器的容量由式(1)决定:
式中u为复接单位的比特数,m为被复接的基群数,这里,u=1,m=4,1 b是先写进去以便读出的存储起始量,由此可得:
可见,缓冲存储器的容量取2 b就够了[1]。
2.2 码速调整帧结构
由itu-t建议g.724推荐的准同步复接二次群帧结构如图3、图4所示。
二次群帧长为848 b,一帧分为4组,每组为212 b,这212 b的分配,4个基群相似,以第l基群为例,帧结构如图3所示。将212 b分为4组,每组53 b。第ⅰ组的1,2,3三个码位,供插入复接器帧同步码用,以f表示;然后是50 b的信息码;ⅱ,ⅲ,ⅳ组的第1位码用作标志信号,用c表示;第ⅳ组的第2个码位就是码速调整的码位,用v表示,需要插入时,就在这个位置上插入一个不带信息的脉冲,不需要插入时,这个码位仍传信息码;ⅱ、ⅲ、ⅳ组的其他位置都是信息码。4个基群的第1~3个码位复接在一起,共12位,其中前10位作为复接器的帧同步码,第ll位为告警指示,第12位作为备用。4个基群的插入标志信号码和码速调整比特,复接后又分别连在一起。具体复接帧结构图如图4所示。复帧包含的比特内容如下[1]:
(1) 帧定位10 b,表示为f11f12~f13f23,码型为1111010000;
(2) 公务2 b,其中1 b(11位)用来向对端发出告警指示;另外1 b(12位)留作国内使用;
(3) 支路信息820 b,第ⅰ组为200 b(13~212),第ⅱ组为208 b(217~424),第ⅲ组为208 b(429~636),第ⅳ组为204 b(645~848);
(4) 码速调整4 b,表示为v1,v2,v3,v4(641~644位),各基群l b,共4 b;
(5) 插入标志12 b,以c表示,填充脉冲4 b。为了使接收端能知道是否有插入及插在何处,在复接发端发出插入指令的同时需要发出插入标志信号,以告知分接器有插入