位置:51电子网 » 技术资料 » 新品发布

利用均衡处理技术扩展高速信号传输距离

发布时间:2007/9/8 0:00:00 访问次数:496

每个千兆位背板、连接线和电缆都会使通过它的信号产生衰减,这种信号衰减可能很轻微也可能是致命的,决定于导体的几何尺寸、材料、长度和使用的连接器类型。由于通信工程师一生都在与正弦波打交道,因此他们更喜欢在频域内描述这种失真。图1显示了采用50Ω的带状线(或100Ω的微分带状线)终结的信道增益,也称为频率响应。这种带状线类似于低通滤波器,对高频正弦波的衰减比低频波更厉害。

图2显示了数字信号通过20英寸(0.5米)的FR-4微带线后的衰减情况。在连接线中电介质和趋肤效应的损耗降低了脉冲信号的幅度,使其上升沿和下降沿更加发散。我们喜欢称接收到的脉冲为“短脉冲(runt pulse)”,因为其信号幅度比通常的都小。在二进制的通信系统中,任何不能以足够余量超过接收器门限的短脉冲都会造成误码。

本文讨论了在高速串行链路中降低短脉冲信号幅度的三种情况:连接线或电缆、因为连接器和其它信号转换带来的反射、驱动器和接收器的有限带宽。图3显示了典型的信号传播测试。对这个波形进行调整,以使这个测试信号长的平坦部分代表在你的数据代码中长串的0或1,来显示短脉冲幅度,这是一种最糟糕的情况。在不存在反射、串扰或其他噪声的情况下,单个波形(在接收端所测试的)代表了信道散射的最差情况测试。更长的连接线将引入更多的散射问题,最终导致接收器在1.5米(本实例的情况)的长度就不能正常接收信号。

电压余量是衡量接收器上信号品质的一种尺度,该数值等于发生瞬间采样时信号幅度与接收器阈值之间的最小差值(单位:伏)。在一个反射、串扰或其他噪声为零的系统中,从理论上讲,即使在电压余量非常小的条件下您也能够期待系统实现理想的工作性能。然而,在实际的系统中,您必须保持一个足够大的噪声余量,以容忍系统中最大的反射、串扰和其他噪声,同时依然保持接收信号以足够的余量高于阈值电平,以克服接收器的有限带宽和噪声问题。

按照图4所示的例子,短脉冲幅度等于正常低频信号幅度的85%,只超过接收器门限电平35%,而不是正常情况的50%。比正常信号幅度的75%更短的脉冲信号将减少一半的电压余量,这对噪声预算是很大的冲击,但是仍然能工作。对于一般的二进制通信,不使用均衡处理,我们希望到达接收器的短脉冲幅度永远不低于低频脉冲幅度的70%。

短脉冲信号的衰减

在图4中左边是2个波特周期的正弦波。这个短脉冲(101)看起来更像这个正弦波,因此能够从信道衰减的频域图中推断出短脉冲的幅度。

在图4中,数据波的波特率为2.5Gbps。这个频率(对应的正弦波频率)的一半为1.25GHz,在1.25GHz处半米曲线的衰减为4.5dB。在十分之一这个频率下,相同的曲线的衰减为1.5dB,大约对应于8B/10B编码数据传输系统中最低感兴趣频率。这两个数据之间的差值(-3dB)接近在接收器端短脉冲与低频信号幅度的比值。这个系统只有-3dB的衰减,能够满足链路性能的70%频域规格要求,这准确地解释了为什么时域波形在半米处的看起来那么好。

仔细研究图4会发现,在时域中实际的短脉冲幅度为正常信号幅度的85%,比频域近似方法预估的结果好。这个差异部分是缘于正弦波的谐波组成,谐波的基本幅度超过了正弦波信号的幅度,部分缘于凭经验进行的时域与频域之间快速转换所必然有的失真。简单的时域规格保守地估计了这些因素。如果数据代码允许比8B/10B编码更长的连续0或1,那么你必须对应地使用更低频率作为你“感兴趣的最低频率”。在时域内,可以看到接收到的信号在变成短信号之前,更接近其最大范围的下限或上限,使其在更糟糕的情况下短脉冲信号更难以超过门限电平。

就经验而言,观察最高工作频率(101010模式的代码)范围信道衰减与最低工作频率(决定于你的数据编码长度)的信道衰减的差异,以快速估计在接收器端短脉冲幅度衰减。这种简单的频域方法只能粗略估计链路性能,它不能替代严格的时域仿真,但是可以大大地提高对链路特性的理解。

如果能提供低偏移的时钟分配,或者在接收器上使用时钟恢复单元解决时钟偏移问题,对于任何的二进制CMOS逻辑系列,一个具有1dB的短脉冲衰减的信道都能表现出很好的性能;衰减达3dB的信道需要一个严格布局、接收器门限良好控制的微分架构;具有6dB衰减的信道需要均衡处理。



图1:与长PCB连接线相关的有效信道增益决定于线宽、电介质材料、长度和所用连接器类型



图2:长的连接线降低了输入脉冲信号的幅度,使其上升和下降沿发散



图3:该测试波形显示了最差情况的短脉冲幅度


每个千兆位背板、连接线和电缆都会使通过它的信号产生衰减,这种信号衰减可能很轻微也可能是致命的,决定于导体的几何尺寸、材料、长度和使用的连接器类型。由于通信工程师一生都在与正弦波打交道,因此他们更喜欢在频域内描述这种失真。图1显示了采用50Ω的带状线(或100Ω的微分带状线)终结的信道增益,也称为频率响应。这种带状线类似于低通滤波器,对高频正弦波的衰减比低频波更厉害。

图2显示了数字信号通过20英寸(0.5米)的FR-4微带线后的衰减情况。在连接线中电介质和趋肤效应的损耗降低了脉冲信号的幅度,使其上升沿和下降沿更加发散。我们喜欢称接收到的脉冲为“短脉冲(runt pulse)”,因为其信号幅度比通常的都小。在二进制的通信系统中,任何不能以足够余量超过接收器门限的短脉冲都会造成误码。

本文讨论了在高速串行链路中降低短脉冲信号幅度的三种情况:连接线或电缆、因为连接器和其它信号转换带来的反射、驱动器和接收器的有限带宽。图3显示了典型的信号传播测试。对这个波形进行调整,以使这个测试信号长的平坦部分代表在你的数据代码中长串的0或1,来显示短脉冲幅度,这是一种最糟糕的情况。在不存在反射、串扰或其他噪声的情况下,单个波形(在接收端所测试的)代表了信道散射的最差情况测试。更长的连接线将引入更多的散射问题,最终导致接收器在1.5米(本实例的情况)的长度就不能正常接收信号。

电压余量是衡量接收器上信号品质的一种尺度,该数值等于发生瞬间采样时信号幅度与接收器阈值之间的最小差值(单位:伏)。在一个反射、串扰或其他噪声为零的系统中,从理论上讲,即使在电压余量非常小的条件下您也能够期待系统实现理想的工作性能。然而,在实际的系统中,您必须保持一个足够大的噪声余量,以容忍系统中最大的反射、串扰和其他噪声,同时依然保持接收信号以足够的余量高于阈值电平,以克服接收器的有限带宽和噪声问题。

按照图4所示的例子,短脉冲幅度等于正常低频信号幅度的85%,只超过接收器门限电平35%,而不是正常情况的50%。比正常信号幅度的75%更短的脉冲信号将减少一半的电压余量,这对噪声预算是很大的冲击,但是仍然能工作。对于一般的二进制通信,不使用均衡处理,我们希望到达接收器的短脉冲幅度永远不低于低频脉冲幅度的70%。

短脉冲信号的衰减

在图4中左边是2个波特周期的正弦波。这个短脉冲(101)看起来更像这个正弦波,因此能够从信道衰减的频域图中推断出短脉冲的幅度。

在图4中,数据波的波特率为2.5Gbps。这个频率(对应的正弦波频率)的一半为1.25GHz,在1.25GHz处半米曲线的衰减为4.5dB。在十分之一这个频率下,相同的曲线的衰减为1.5dB,大约对应于8B/10B编码数据传输系统中最低感兴趣频率。这两个数据之间的差值(-3dB)接近在接收器端短脉冲与低频信号幅度的比值。这个系统只有-3dB的衰减,能够满足链路性能的70%频域规格要求,这准确地解释了为什么时域波形在半米处的看起来那么好。

仔细研究图4会发现,在时域中实际的短脉冲幅度为正常信号幅度的85%,比频域近似方法预估的结果好。这个差异部分是缘于正弦波的谐波组成,谐波的基本幅度超过了正弦波信号的幅度,部分缘于凭经验进行的时域与频域之间快速转换所必然有的失真。简单的时域规格保守地估计了这些因素。如果数据代码允许比8B/10B编码更长的连续0或1,那么你必须对应地使用更低频率作为你“感兴趣的最低频率”。在时域内,可以看到接收到的信号在变成短信号之前,更接近其最大范围的下限或上限,使其在更糟糕的情况下短脉冲信号更难以超过门限电平。

就经验而言,观察最高工作频率(101010模式的代码)范围信道衰减与最低工作频率(决定于你的数据编码长度)的信道衰减的差异,以快速估计在接收器端短脉冲幅度衰减。这种简单的频域方法只能粗略估计链路性能,它不能替代严格的时域仿真,但是可以大大地提高对链路特性的理解。

如果能提供低偏移的时钟分配,或者在接收器上使用时钟恢复单元解决时钟偏移问题,对于任何的二进制CMOS逻辑系列,一个具有1dB的短脉冲衰减的信道都能表现出很好的性能;衰减达3dB的信道需要一个严格布局、接收器门限良好控制的微分架构;具有6dB衰减的信道需要均衡处理。



图1:与长PCB连接线相关的有效信道增益决定于线宽、电介质材料、长度和所用连接器类型



图2:长的连接线降低了输入脉冲信号的幅度,使其上升和下降沿发散



图3:该测试波形显示了最差情况的短脉冲幅度


-->
相关IC型号
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!