最小二极管导通时间10us作为限制其二极管反向恢复速度
发布时间:2022/11/15 13:24:45 访问次数:53
在高压3.3kV IGBT以上规格书中已经对FWD正向导通时间ton进行了明确定义和需求,以2400A/3.3kV HE3为例如下,其已经明确给出最小二极管导通时间10us作为限制,这主要是大功率应用中系统回路杂散电感比较大,开关时间比较长,在器件开通过程中瞬时容易超过二极管最大允许功耗PRQM。
脉冲宽度ton对IGBT关断小电流(大约1/10*Ic)时影响较小,实际可以忽略。
IGBT关断大电流时候对脉冲宽度ton有一定依赖性,ton越小电压尖峰V越高,且关断电流拖尾会突变,发生高频振荡。

用IGBT5 PrimePACK™3+FF1800R17IP5来观察大功率二极管特性,尤其小电流条件下随ton变化,下面一排展示在VR=900V,1200V条件下,在小电流IF=20A条件下两个波形的直接对比,很明显在ton=3us时候,示波器已经hold不住这个高频振荡的幅值。这也引证在大功率器件应用中负载电流过零点的高频振荡和FWD短时反向恢复过程有紧密关系。
直观波形看完后,用实际数据来进一步量化对比这个过程,二极管的dv/dt和di/dt随toff变化,越小FWD导通时间,其反向特性会变快。当FWD两端的VR越高时,随着二极管导通脉冲变窄,其二极管反向恢复速度会加快.
实线是用了miller功能的,虚线是没有用miller功能的,峰值更大,增加了寄生导通的风险。看来米勒钳位无法解决di/dt引起的寄生导通问题。这种情况下,只能仰仗负压关断,或者增大Rg来放慢di/dt了。
在实际产品中,特别是小功率的三相桥模块产品,基本发射极都不是Kelvin结构,连接结构复杂,,非常容易出现di/dt引起的寄生导通现象。好在这种小模块使用的时候都会加上不小的门极电阻,从而限制了开关斜率。而大功率模块一般都会有辅助Emitter脚,驱动回路里不会出现大电流叠加。
对于米勒电流引起的寄生导通,在0V关断的情况下,可以使用米勒钳位来抑制。当出现非米勒电流引起的寄生导通时,如果不想减慢开关速度增加损耗的话,加个负压会是一个极其便利的手段。
来源:eepw.如涉版权请联系删除。图片供参考
在高压3.3kV IGBT以上规格书中已经对FWD正向导通时间ton进行了明确定义和需求,以2400A/3.3kV HE3为例如下,其已经明确给出最小二极管导通时间10us作为限制,这主要是大功率应用中系统回路杂散电感比较大,开关时间比较长,在器件开通过程中瞬时容易超过二极管最大允许功耗PRQM。
脉冲宽度ton对IGBT关断小电流(大约1/10*Ic)时影响较小,实际可以忽略。
IGBT关断大电流时候对脉冲宽度ton有一定依赖性,ton越小电压尖峰V越高,且关断电流拖尾会突变,发生高频振荡。

用IGBT5 PrimePACK™3+FF1800R17IP5来观察大功率二极管特性,尤其小电流条件下随ton变化,下面一排展示在VR=900V,1200V条件下,在小电流IF=20A条件下两个波形的直接对比,很明显在ton=3us时候,示波器已经hold不住这个高频振荡的幅值。这也引证在大功率器件应用中负载电流过零点的高频振荡和FWD短时反向恢复过程有紧密关系。
直观波形看完后,用实际数据来进一步量化对比这个过程,二极管的dv/dt和di/dt随toff变化,越小FWD导通时间,其反向特性会变快。当FWD两端的VR越高时,随着二极管导通脉冲变窄,其二极管反向恢复速度会加快.
实线是用了miller功能的,虚线是没有用miller功能的,峰值更大,增加了寄生导通的风险。看来米勒钳位无法解决di/dt引起的寄生导通问题。这种情况下,只能仰仗负压关断,或者增大Rg来放慢di/dt了。
在实际产品中,特别是小功率的三相桥模块产品,基本发射极都不是Kelvin结构,连接结构复杂,,非常容易出现di/dt引起的寄生导通现象。好在这种小模块使用的时候都会加上不小的门极电阻,从而限制了开关斜率。而大功率模块一般都会有辅助Emitter脚,驱动回路里不会出现大电流叠加。
对于米勒电流引起的寄生导通,在0V关断的情况下,可以使用米勒钳位来抑制。当出现非米勒电流引起的寄生导通时,如果不想减慢开关速度增加损耗的话,加个负压会是一个极其便利的手段。
来源:eepw.如涉版权请联系删除。图片供参考