提高开关电源效率的电路技术 文章来源:电子元器件查询网 作者:熊猫电子集团公司 岳云
发布时间:2007/8/28 0:00:00 访问次数:374
其中,第一种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。第二种方法是为解决该问题而开发的有源缓冲器(Active Snubber),是一种极为实用的ZVS方式;但是,由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。第三种方法中,采用抽头电感器(Tap Inductor)的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。关于第四种方法,两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率(Time Ratio),并由前段的转换器来进行输出电压控制。它一反“两段式结构将导致效率下降”这一传统思维模式,在低电压大电流的场合非常有效。至于第五种方法,既可将整个转换器电路进行并联,也可像电流倍增器(Current Doubler)那样部分采用并联结构。下面将对利用转换器的并联操作所实现的效率提升情况进行简要阐述。
并联结构转换器实现高效化
1.采用转换器并联结构的效率改善
图1示出了采用单个转换器和两个并联转换器的不同转换器系统结构。这些并联的转换器是完全相同的,内阻为r,固定损耗为PC。设负载电压为VO,负载电流为IO,则采用单个转换器时的电效率ηS为:
ηS = VOIO /(VOI_ + PC + rIO2) (1)
图2描绘了负载电流与效率特性的关系曲线。
对于采用并联转换器结构的场合而言,其功率效率为:
ηP=VOIOVO/(VOIO+2PC+(k2+(1- k)2 )rIO2) (2)
式中,k为负载电流的分割比。
效率改善率F被定义为:
F≡(ηP-ηS)/ηS×100% (3)
将(1)式和(2)式代入可得出:
F=(2k(1-k) rIO2 - PC)/((2k2- 2k+1)rIO2+2PC + VOIO) (4)
该效率改善率与负载电流的关系曲线示于图3。由图可知,k=0.5时的效率改善率最高。
另外,如果将负载电流集中于一个转换器反而会使效率下降,这是由于存在固定损耗造成的。
2.采用PFC(功率因数校正)型转换器时的效率改善
以往的一段式PFC转换器为了在改善输入电流波形的同时减小输出电压纹波而采用了图4所示的混合并联(Hybrid Parallel
其中,第一种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。第二种方法是为解决该问题而开发的有源缓冲器(Active Snubber),是一种极为实用的ZVS方式;但是,由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。第三种方法中,采用抽头电感器(Tap Inductor)的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。关于第四种方法,两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率(Time Ratio),并由前段的转换器来进行输出电压控制。它一反“两段式结构将导致效率下降”这一传统思维模式,在低电压大电流的场合非常有效。至于第五种方法,既可将整个转换器电路进行并联,也可像电流倍增器(Current Doubler)那样部分采用并联结构。下面将对利用转换器的并联操作所实现的效率提升情况进行简要阐述。
并联结构转换器实现高效化
1.采用转换器并联结构的效率改善
图1示出了采用单个转换器和两个并联转换器的不同转换器系统结构。这些并联的转换器是完全相同的,内阻为r,固定损耗为PC。设负载电压为VO,负载电流为IO,则采用单个转换器时的电效率ηS为:
ηS = VOIO /(VOI_ + PC + rIO2) (1)
图2描绘了负载电流与效率特性的关系曲线。
对于采用并联转换器结构的场合而言,其功率效率为:
ηP=VOIOVO/(VOIO+2PC+(k2+(1- k)2 )rIO2) (2)
式中,k为负载电流的分割比。
效率改善率F被定义为:
F≡(ηP-ηS)/ηS×100% (3)
将(1)式和(2)式代入可得出:
F=(2k(1-k) rIO2 - PC)/((2k2- 2k+1)rIO2+2PC + VOIO) (4)
该效率改善率与负载电流的关系曲线示于图3。由图可知,k=0.5时的效率改善率最高
另外,如果将负载电流集中于一个转换器反而会使效率下降,这是由于存在固定损耗造成的。
2.采用PFC(功率因数校正)型转换器时的效率改善
以往的一段式PFC转换器为了在改善输入电流波形的同时减小输出电压纹波而采用了图4所示的混合并联(Hybrid Parallel,简称HP)方式。这种PFC转换器所采用的并联结构是把以不连续电流模式工作的回扫型转换器置于
其中,第一种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。第二种方法是为解决该问题而开发的有源缓冲器(Active Snubber),是一种极为实用的ZVS方式;但是,由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。第三种方法中,采用抽头电感器(Tap Inductor)的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。关于第四种方法,两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率(Time Ratio),并由前段的转换器来进行输出电压控制。它一反“两段式结构将导致效率下降”这一传统思维模式,在低电压大电流的场合非常有效。至于第五种方法,既可将整个转换器电路进行并联,也可像电流倍增器(Current Doubler)那样部分采用并联结构。下面将对利用转换器的并联操作所实现的效率提升情况进行简要阐述。
并联结构转换器实现高效化
1.采用转换器并联结构的效率改善
图1示出了采用单个转换器和两个并联转换器的不同转换器系统结构。这些并联的转换器是完全相同的,内阻为r,固定损耗为PC。设负载电压为VO,负载电流为IO,则采用单个转换器时的电效率ηS为:
ηS = VOIO /(VOI_ + PC + rIO2) (1)
图2描绘了负载电流与效率特性的关系曲线。
对于采用并联转换器结构的场合而言,其功率效率为:
ηP=VOIOVO/(VOIO+2PC+(k2+(1- k)2 )rIO2) (2)
式中,k为负载电流的分割比。
效率改善率F被定义为:
F≡(ηP-ηS)/ηS×100% (3)
将(1)式和(2)式代入可得出:
F=(2k(1-k) rIO2 - PC)/((2k2- 2k+1)rIO2+2PC + VOIO) (4)
该效率改善率与负载电流的关系曲线示于图3。由图可知,k=0.5时的效率改善率最高。
另外,如果将负载电流集中于一个转换器反而会使效率下降,这是由于存在固定损耗造成的。
2.采用PFC(功率因数校正)型转换器时的效率改善
以往的一段式PFC转换器为了在改善输入电流波形的同时减小输出电压纹波而采用了图4所示的混合并联(Hybrid Parallel
其中,第一种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。第二种方法是为解决该问题而开发的有源缓冲器(Active Snubber),是一种极为实用的ZVS方式;但是,由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。第三种方法中,采用抽头电感器(Tap Inductor)的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。关于第四种方法,两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率(Time Ratio),并由前段的转换器来进行输出电压控制。它一反“两段式结构将导致效率下降”这一传统思维模式,在低电压大电流的场合非常有效。至于第五种方法,既可将整个转换器电路进行并联,也可像电流倍增器(Current Doubler)那样部分采用并联结构。下面将对利用转换器的并联操作所实现的效率提升情况进行简要阐述。
并联结构转换器实现高效化
1.采用转换器并联结构的效率改善
图1示出了采用单个转换器和两个并联转换器的不同转换器系统结构。这些并联的转换器是完全相同的,内阻为r,固定损耗为PC。设负载电压为VO,负载电流为IO,则采用单个转换器时的电效率ηS为:
ηS = VOIO /(VOI_ + PC + rIO2) (1)
图2描绘了负载电流与效率特性的关系曲线。
对于采用并联转换器结构的场合而言,其功率效率为:
ηP=VOIOVO/(VOIO+2PC+(k2+(1- k)2 )rIO2) (2)
式中,k为负载电流的分割比。
效率改善率F被定义为:
F≡(ηP-ηS)/ηS×100% (3)
将(1)式和(2)式代入可得出:
F=(2k(1-k) rIO2 - PC)/((2k2- 2k+1)rIO2+2PC + VOIO) (4)
该效率改善率与负载电流的关系曲线示于图3。由图可知,k=0.5时的效率改善率最高
另外,如果将负载电流集中于一个转换器反而会使效率下降,这是由于存在固定损耗造成的。
2.采用PFC(功率因数校正)型转换器时的效率改善
以往的一段式PFC转换器为了在改善输入电流波形的同时减小输出电压纹波而采用了图4所示的混合并联(Hybrid Parallel,简称HP)方式。这种PFC转换器所采用的并联结构是把以不连续电流模式工作的回扫型转换器置于