基于ADSP21060和Virtex II的图像处理系统设计
发布时间:2007/8/24 0:00:00 访问次数:388
作者:王宇舟 贾志宏 李彦琴 耿立红 孙才红
摘要:介绍一种基于ADSP21060和Virtex II的星载图像处理系统。分析了图像处理系统的功能和任务,给出了处理系统的硬件结果、FPGA的功能模块、DSP的软件框架和模块。通过地面原理样机开发,验证了系统设计的正确性和高效性。
关键词:ADSP21060 Virtex II 图像处理系统 积分器 乒乓结构
图像处理系统多采用DSP阵列、DSP加FPGA/CPLD或单由FPGA/CPLD器件等方式构成。采用DSP阵列构成的图像处理系统,其优点是处理功能可以通过软件灵活修改,其缺点主要有功耗大、体积大、成本高;采用单由FPGA/CPLD等可编程器件构成的系统,可以避免DSP阵列系统功耗大、体积大的缺点,并可以根据系统要求,在硬件构造上灵活的配置,但对于复杂的算法,其设计复杂度急剧上升。正因为如此,当前很多设计选择DSP加FPGA/CPLD的结构来构成图像处理系统。本空间太阳望远镜星载图像处理系统,正是一种基于DSP和FPGA构造的图像处理系统。本文讨论了系统的功能任务、系统结构、FPGA设计的逻辑模块、DSP的软件结构和原理样机的实验结果。
1 图像处理系统的功能和任务
1.1 系统的外围接口
系统的外围接口如图1。处理系统收来自CCD单元的图像数据和同步信号,同时向CCD单元提供复位、曝光开始、数据读出等控制信号;CEU是一个管理机,管理和控制CCD单元、图像处理单元和压缩单元,CEU单元向图像处理系统发送各种命令,如CCD标定、正常的观测测试及观测数据处理所需要的数据,如观测模式、时间等;系统将处理完成的数据送到压缩单元进一步压缩。
1.2 系统的图像处理任务
图像处理系统的任务是接收CCD传来的图像和同步信号,进行图像积分、辐射校正、几何校正、磁图偏阵计算和图像格式化,然后把数据送到压缩单元进行压缩。
1)图像积分:也就是图像的多帧叠加,其目的是提高信噪比和消除图像的时间相关性以压缩数据量。空间太阳镜有三个观测模式,分别是爆发模式、活动区模式和宁静态模式。经计算,三种观测模式下图像积分的帧数分别是:4帧、24帧、240帧;每个模式又顺次观测六个分量,六个分量分别是:SV1、SV2、SQ1、SQ2、SU1、SU2。爆发模式的观测时间是30s。30s的时间是这样安排的:每个分量连续采集4帧,每秒一帧,然后1s进行偏振光学元件的切换,如此直到六个分量观测完毕。活动区模式由6个连续的爆发周期构成,观测时间是3min;而宁静态模式又是10次活动区构成周期构成,观测周期是30min。
2)图像的辐射校正:图像由于受到大气振动、传感器自身特性、宇宙射线等辐射的影响,图像的质量会产生退化,必须进行辐射校正。主要考虑CCD的校正(暗流、偏置、平场)和条纹斑点的消除两个方面。
3)图像的几何校正:图像的几何校正,成像过程中引起的几何畸变的校正;由于系统或随机因素造成图像产生几何畸变,必须进行校正。考虑图像漂移的校正,采用相关技术,求出活动图像相对于参考图像的漂移量,再采用线性内插累加的方式,实现漂移前后图像的积分问题。根据太阳米粒的存活寿命,几何校正只对宁静模式观测进行,并且是以3min作为校正时间间隔。
4)图像的偏振计算:空间太阳望远镜主要进行太阳磁场测量,磁图的偏振归算也是重要任务之一。磁场图像的归算还可以是数据量压缩1.5倍。
5)图像模式化:给图像加上图像头,应包括:仪器号、时
作者:王宇舟 贾志宏 李彦琴 耿立红 孙才红
摘要:介绍一种基于ADSP21060和Virtex II的星载图像处理系统。分析了图像处理系统的功能和任务,给出了处理系统的硬件结果、FPGA的功能模块、DSP的软件框架和模块。通过地面原理样机开发,验证了系统设计的正确性和高效性。
关键词:ADSP21060 Virtex II 图像处理系统 积分器 乒乓结构
图像处理系统多采用DSP阵列、DSP加FPGA/CPLD或单由FPGA/CPLD器件等方式构成。采用DSP阵列构成的图像处理系统,其优点是处理功能可以通过软件灵活修改,其缺点主要有功耗大、体积大、成本高;采用单由FPGA/CPLD等可编程器件构成的系统,可以避免DSP阵列系统功耗大、体积大的缺点,并可以根据系统要求,在硬件构造上灵活的配置,但对于复杂的算法,其设计复杂度急剧上升。正因为如此,当前很多设计选择DSP加FPGA/CPLD的结构来构成图像处理系统。本空间太阳望远镜星载图像处理系统,正是一种基于DSP和FPGA构造的图像处理系统。本文讨论了系统的功能任务、系统结构、FPGA设计的逻辑模块、DSP的软件结构和原理样机的实验结果。
1 图像处理系统的功能和任务
1.1 系统的外围接口
系统的外围接口如图1。处理系统收来自CCD单元的图像数据和同步信号,同时向CCD单元提供复位、曝光开始、数据读出等控制信号;CEU是一个管理机,管理和控制CCD单元、图像处理单元和压缩单元,CEU单元向图像处理系统发送各种命令,如CCD标定、正常的观测测试及观测数据处理所需要的数据,如观测模式、时间等;系统将处理完成的数据送到压缩单元进一步压缩。
1.2 系统的图像处理任务
图像处理系统的任务是接收CCD传来的图像和同步信号,进行图像积分、辐射校正、几何校正、磁图偏阵计算和图像格式化,然后把数据送到压缩单元进行压缩。
1)图像积分:也就是图像的多帧叠加,其目的是提高信噪比和消除图像的时间相关性以压缩数据量。空间太阳镜有三个观测模式,分别是爆发模式、活动区模式和宁静态模式。经计算,三种观测模式下图像积分的帧数分别是:4帧、24帧、240帧;每个模式又顺次观测六个分量,六个分量分别是:SV1、SV2、SQ1、SQ2、SU1、SU2。爆发模式的观测时间是30s。30s的时间是这样安排的:每个分量连续采集4帧,每秒一帧,然后1s进行偏振光学元件的切换,如此直到六个分量观测完毕。活动区模式由6个连续的爆发周期构成,观测时间是3min;而宁静态模式又是10次活动区构成周期构成,观测周期是30min。
2)图像的辐射校正:图像由于受到大气振动、传感器自身特性、宇宙射线等辐射的影响,图像的质量会产生退化,必须进行辐射校正。主要考虑CCD的校正(暗流、偏置、平场)和条纹斑点的消除两个方面。
3)图像的几何校正:图像的几何校正,成像过程中引起的几何畸变的校正;由于系统或随机因素造成图像产生几何畸变,必须进行校正。考虑图像漂移的校正,采用相关技术,求出活动图像相对于参考图像的漂移量,再采用线性内插累加的方式,实现漂移前后图像的积分问题。根据太阳米粒的存活寿命,几何校正只对宁静模式观测进行,并且是以3min作为校正时间间隔。
4)图像的偏振计算:空间太阳望远镜主要进行太阳磁场测量,磁图的偏振归算也是重要任务之一。磁场图像的归算还可以是数据量压缩1.5倍。
5)图像模式化:给图像加上图像头,应包括:仪器号、时
上一篇:基于WIN