便携式电子设备电源管理系统设计
发布时间:2007/8/24 0:00:00 访问次数:422
作者:曹会宾 应用工程师 哈尔滨圣邦微电子有限公司
本文设计了一种简单可行的电源管理系统,通过检测电源输出电压间接获知电源供电状态,当移动电源电量不足时,电源管理系统会自动切换各个子系统的工作模式,从而达到保护电源、降低功耗、保证供电质量的目的。此外,作者在硬件上应用施密特电路,软件上采用延时校验的方法提高了电源管理系统抗干扰能力,保证了电源监控电路的可靠性。
移动电源的地位在便携式电子产品研究中历来十分重要,它是电子设备的生命源。本文设计了一种可应用于便携式电子设备上的电源管理系统,通过对电源电压进行实时监控,限制非法的大电流放电,并对可能的突发事故进行预测,给系统提供电源紧急报警信号,起到了降低整个系统的功率损耗,保护并延长电池使用寿命的重要作用。
便携式电子设备系统构成
便携式电子设备系统构成如图1所示,图中AT89S52单片机作为整个系统的主控单元;传感器和A/D构成了整个系统的反馈单元;D/A、伺服驱动模块以及执行机构构成了系统的动作实现单元;电源管理系统则为以上所有单元提供能源。以上各个单元的工作模式及相互切换如图2所示:
1. 待机模式
除主控单元外,其它所有子单元均停止供电。如果在规定时间内用户没有执行任何操作,则整个系统自动断电,在断电之前系统自动复位,并把断电原因记录下来。
2. 电量不足模式
当电池电量降到设定值时,系统转入电量不足模式,从这个模式一开始,电源管理系统一方面禁止对电池可能造成破坏的大电流放电动作,另一方面向用户发出报警信息请求充电。如果在规定的时间里操作者没有做出充电响应,系统转入待机模式。
3. 充电模式
操作者按下充电按钮,电源开始充电,除主控单元和电源单元外,其它子系统均断电。当充电完成后,所有子系统重新被激活。
4. 工作模式
在工作模式下,所有子单元都处于供电状态。
系统的各器件并不是全部由移动电源直接供电,根据不同电源电压需要,电源管理系统需要由DC-DC芯片对电池组输出电压进行变压处理。此外,为了提高整个设备的电源供电质量,可以在DC-DC后接入低压差线形稳压电源器(LDO)。
电源管理系统设计
1.移动电源的选择
在便携式电子产品领域,一般采用化学电池作为移动电源。理想的电池应该具有十分高的能量密度、能够在放电过程中保持恒定的电压、内阻小以便具有快速放电能力、能够耐高温、可充电以及成本低等。但实际上没有一种电池可同时具备上述优点,这就要求设计人员根据实际任务的需要,选择一种合适的电池。可充电电池主要有铅酸蓄电池和碱性蓄电池两种。目前使用的镍镉(NiCd)、镍氢(NiMH)和锂离子(Li-Ion)电池都是碱性电池。
a. 铅酸蓄电池
铅酸电池由正负极板、隔板、电解液、安全阀、气塞、外壳等部分组成。正极板上的活性物质是二氧化铅(PbO2),负极板上的活性物质为海绵状纯铅(Pb)。电解液由蒸馏水和纯硫酸按一定比例配制而成。电池槽中装入一定密度的电解液后,由于电化学反应,正、负极板间会产生约为2.1V的电动势。
b. 镍镉电池
镍镉电池(NiCd)正极板上的活性物质由氧化镍粉和石墨粉组成,石墨不参加化学反应,其主要作用是增强导电性。负极板上的活性物质由氧化镉粉和氧化铁粉组成,氧化铁粉的作用是使氧化镉粉有较高的扩散性,防止结块,并增加极板的容量。活性物质分别包在穿孔钢带中,加压成型后即成为电池的正负极板。极板间用耐碱的硬橡胶绝缘棍或有孔的聚氯乙烯瓦楞板隔开。电解液通常用氢氧化钾溶液。与其它电池相比,NiCd电池的自放电率(即电池不使用时失去电荷的速率)适中,但在使
作者:曹会宾 应用工程师 哈尔滨圣邦微电子有限公司
本文设计了一种简单可行的电源管理系统,通过检测电源输出电压间接获知电源供电状态,当移动电源电量不足时,电源管理系统会自动切换各个子系统的工作模式,从而达到保护电源、降低功耗、保证供电质量的目的。此外,作者在硬件上应用施密特电路,软件上采用延时校验的方法提高了电源管理系统抗干扰能力,保证了电源监控电路的可靠性。
移动电源的地位在便携式电子产品研究中历来十分重要,它是电子设备的生命源。本文设计了一种可应用于便携式电子设备上的电源管理系统,通过对电源电压进行实时监控,限制非法的大电流放电,并对可能的突发事故进行预测,给系统提供电源紧急报警信号,起到了降低整个系统的功率损耗,保护并延长电池使用寿命的重要作用。
便携式电子设备系统构成
便携式电子设备系统构成如图1所示,图中AT89S52单片机作为整个系统的主控单元;传感器和A/D构成了整个系统的反馈单元;D/A、伺服驱动模块以及执行机构构成了系统的动作实现单元;电源管理系统则为以上所有单元提供能源。以上各个单元的工作模式及相互切换如图2所示:
1. 待机模式
除主控单元外,其它所有子单元均停止供电。如果在规定时间内用户没有执行任何操作,则整个系统自动断电,在断电之前系统自动复位,并把断电原因记录下来。
2. 电量不足模式
当电池电量降到设定值时,系统转入电量不足模式,从这个模式一开始,电源管理系统一方面禁止对电池可能造成破坏的大电流放电动作,另一方面向用户发出报警信息请求充电。如果在规定的时间里操作者没有做出充电响应,系统转入待机模式。
3. 充电模式
操作者按下充电按钮,电源开始充电,除主控单元和电源单元外,其它子系统均断电。当充电完成后,所有子系统重新被激活。
4. 工作模式
在工作模式下,所有子单元都处于供电状态。
系统的各器件并不是全部由移动电源直接供电,根据不同电源电压需要,电源管理系统需要由DC-DC芯片对电池组输出电压进行变压处理。此外,为了提高整个设备的电源供电质量,可以在DC-DC后接入低压差线形稳压电源器(LDO)。
电源管理系统设计
1.移动电源的选择
在便携式电子产品领域,一般采用化学电池作为移动电源。理想的电池应该具有十分高的能量密度、能够在放电过程中保持恒定的电压、内阻小以便具有快速放电能力、能够耐高温、可充电以及成本低等。但实际上没有一种电池可同时具备上述优点,这就要求设计人员根据实际任务的需要,选择一种合适的电池。可充电电池主要有铅酸蓄电池和碱性蓄电池两种。目前使用的镍镉(NiCd)、镍氢(NiMH)和锂离子(Li-Ion)电池都是碱性电池。
a. 铅酸蓄电池
铅酸电池由正负极板、隔板、电解液、安全阀、气塞、外壳等部分组成。正极板上的活性物质是二氧化铅(PbO2),负极板上的活性物质为海绵状纯铅(Pb)。电解液由蒸馏水和纯硫酸按一定比例配制而成。电池槽中装入一定密度的电解液后,由于电化学反应,正、负极板间会产生约为2.1V的电动势。
b. 镍镉电池
镍镉电池(NiCd)正极板上的活性物质由氧化镍粉和石墨粉组成,石墨不参加化学反应,其主要作用是增强导电性。负极板上的活性物质由氧化镉粉和氧化铁粉组成,氧化铁粉的作用是使氧化镉粉有较高的扩散性,防止结块,并增加极板的容量。活性物质分别包在穿孔钢带中,加压成型后即成为电池的正负极板。极板间用耐碱的硬橡胶绝缘棍或有孔的聚氯乙烯瓦楞板隔开。电解液通常用氢氧化钾溶液。与其它电池相比,NiCd电池的自放电率(即电池不使用时失去电荷的速率)适中,但在使