高电压功率IC在不增加成本的前提下改善性能(图)
发布时间:2007/8/24 0:00:00 访问次数:434
作者:Naresh Shetty IR消费及工业部门运动控制产品经理
现代工业及电器应用的设计人员正面临越来越大的压力,需要面对缩小应用尺寸、减少元件数目,同时改善总体系统性能和可靠性的挑战,还要兼顾价格和产品上市时间,如何解决这些挑战?本文介绍了最新的高电压IC(HVIC)技术,可帮助电机控制和功率应用设计人员节省空间、减少元件数目和改善可靠性,同时提供得到增强的保护功能。
电流感测方法
为了缩小应用尺寸、减少元件数目,同时改善总体系统性能和可靠性,现代工业及电器应用的设计人员正面临越来越大的压力。同时,价格和产品上市时间的要求还意味着,既要实现上述目标,又不能导致成本显著上升或者项目开发时间延长。现在,最新的高电压集成电路(HVIC)技术简化了这些应用中越来越多地采用的基于换相变速电机驱动解决方案的设计,从而帮助工程师满足上述要求。而且,同样的集成技术也可以用于通用倒相电路、开关电源(SMPS)和不间断电源(UPS)。
变速驱动的需求
变速电机驱动可以为空调器等家用电器、工业或商业设备带来许多好处。这些好处包括提高机器设备的能源效率、改善可靠性、降低振动和消除电气与声学噪声。之所以能够有效地以具有成本效益的方式采用这类变速驱动,主要是因为通过IGBT和功率MOSFET等器件在功率半导体技术方面取得了进展。这些设计的关键是,所采用的基于IGBT或MOSFET的功率放大级免于出现短路、过流和接地故障。
逆变器级和电机相电流的感测是这类设计中的另一项关键要求,因为它是电流模式控制与过流保护的基础。电流模式控制要求很高的精确度和线性度,而过流保护要求响应速度要快。实际上,电流信号可以通过与下列结点相连接而被取样:正或负DC总线、单IGBT相位脚、或电机相位超前(图1)。不管在哪个DC总线上取样的电流信号,都是所有IGBT相位脚电流的矢量和。另外,信号内容是经脉宽调制的基本变频电机电流的包络,在固定的载波频率上。因此,必须采用相当复杂的“取样与保持”及数字信号处理(DSP)电路,用来提取具有良好线性度和精确度的有用的电流信息。
HVIC器件的横截面
在单个IGBT相位脚上对电流的取样看起来更容易操作了,但实际上却不能消除对载波频率取样处理的需求。到目前为止,最简单的、容易获得的电流信号来自于电机的相位超前,信号内容仅是基本的变频电机电流。需要考虑的一个重要因素是,漂移在600~1200V普通模式电压上的小差分信号在几毫伏范围内。另外,由于IGBT逆变器相位的作用,普通模式电压以最高10V/ns的dV/dt速率在-DC到+DC之间波动。
高电压IC技术
高电压IC技术(HVIC)取得了新进展,现在设计人员能够采用精良、节省空间且元件较少的解决方案,从而解决了目前驱动设计中的保护与电流感测问题。例如,IR自有的HVIC技术允许将一个低侧接地CMOS电路和一个高侧浮动CMOS做到一起,通过N或P沟道LDMOS区域相隔离(图2)。LDMOS的作用是位准移动,目的是在低侧和高侧电路之间跨过高压栅来传递控制信号。HVIC技术使得人们能够设计出单片电路解决方案用于驱动和保护MOSFET及IGBT。同时,它提供了感测一个漂移在大的普通模式电压上的小差分电压的能力,甚至在快速瞬变的时候。因此HVIC技术是创建电流感测接口IC的理想基础。
采用IR HVIC 技术开发的1200V栅极驱动器集成电路。
作者:Naresh Shetty IR消费及工业部门运动控制产品经理
现代工业及电器应用的设计人员正面临越来越大的压力,需要面对缩小应用尺寸、减少元件数目,同时改善总体系统性能和可靠性的挑战,还要兼顾价格和产品上市时间,如何解决这些挑战?本文介绍了最新的高电压IC(HVIC)技术,可帮助电机控制和功率应用设计人员节省空间、减少元件数目和改善可靠性,同时提供得到增强的保护功能。
电流感测方法
为了缩小应用尺寸、减少元件数目,同时改善总体系统性能和可靠性,现代工业及电器应用的设计人员正面临越来越大的压力。同时,价格和产品上市时间的要求还意味着,既要实现上述目标,又不能导致成本显著上升或者项目开发时间延长。现在,最新的高电压集成电路(HVIC)技术简化了这些应用中越来越多地采用的基于换相变速电机驱动解决方案的设计,从而帮助工程师满足上述要求。而且,同样的集成技术也可以用于通用倒相电路、开关电源(SMPS)和不间断电源(UPS)。
变速驱动的需求
变速电机驱动可以为空调器等家用电器、工业或商业设备带来许多好处。这些好处包括提高机器设备的能源效率、改善可靠性、降低振动和消除电气与声学噪声。之所以能够有效地以具有成本效益的方式采用这类变速驱动,主要是因为通过IGBT和功率MOSFET等器件在功率半导体技术方面取得了进展。这些设计的关键是,所采用的基于IGBT或MOSFET的功率放大级免于出现短路、过流和接地故障。
逆变器级和电机相电流的感测是这类设计中的另一项关键要求,因为它是电流模式控制与过流保护的基础。电流模式控制要求很高的精确度和线性度,而过流保护要求响应速度要快。实际上,电流信号可以通过与下列结点相连接而被取样:正或负DC总线、单IGBT相位脚、或电机相位超前(图1)。不管在哪个DC总线上取样的电流信号,都是所有IGBT相位脚电流的矢量和。另外,信号内容是经脉宽调制的基本变频电机电流的包络,在固定的载波频率上。因此,必须采用相当复杂的“取样与保持”及数字信号处理(DSP)电路,用来提取具有良好线性度和精确度的有用的电流信息。
HVIC器件的横截面
在单个IGBT相位脚上对电流的取样看起来更容易操作了,但实际上却不能消除对载波频率取样处理的需求。到目前为止,最简单的、容易获得的电流信号来自于电机的相位超前,信号内容仅是基本的变频电机电流。需要考虑的一个重要因素是,漂移在600~1200V普通模式电压上的小差分信号在几毫伏范围内。另外,由于IGBT逆变器相位的作用,普通模式电压以最高10V/ns的dV/dt速率在-DC到+DC之间波动。
高电压IC技术
高电压IC技术(HVIC)取得了新进展,现在设计人员能够采用精良、节省空间且元件较少的解决方案,从而解决了目前驱动设计中的保护与电流感测问题。例如,IR自有的HVIC技术允许将一个低侧接地CMOS电路和一个高侧浮动CMOS做到一起,通过N或P沟道LDMOS区域相隔离(图2)。LDMOS的作用是位准移动,目的是在低侧和高侧电路之间跨过高压栅来传递控制信号。HVIC技术使得人们能够设计出单片电路解决方案用于驱动和保护MOSFET及IGBT。同时,它提供了感测一个漂移在大的普通模式电压上的小差分电压的能力,甚至在快速瞬变的时候。因此HVIC技术是创建电流感测接口IC的理想基础。
采用IR HVIC 技术开发的1200V栅极驱动器集成电路。