位置:51电子网 » 技术资料 » 显示光电

基于晶闸管关断时间控制的高效中频电源 文章作者:宋 朋 刘 群 敖章洪

发布时间:2007/8/20 0:00:00 访问次数:446

        摘要:针对常规晶闸管并联谐振中频电源存在的在熔炼期内输出功率达不到额定功率的问题,设计了一种对DC/AC逆变器采用调节功率角φ的触发控制电路,配合原有的AC/DC相控双闭环控制电路,可以使中频熔炼电源实现高效控制。

    关键词:中频电源;功率因数角φ调节;关断时间控制

    1 概述

    常规中频电源是由AC/DC可控整流器与单相DC/AC电流型并联谐振逆变器组成的,它在感应加热熔炼过程中的正常工作如图1所示,是以负载电路中的电流iH超前其电压uH为前提条件的。逆变电路中晶闸管的超前触发时间应大于晶闸管关断时间,即

t>(γ+δ)/ω   (1)
式中:γ为晶闸管换流重叠角;
δ为恢复角;
ω为中频电源角频率。
设β为超前触发角,为保证安全换流,应考虑安全裕量角θ,则

β=γ+δ+θ   (2)
负载电流iH的基波超前其电压uH的角度称为负载超前功率因数角,从图1(b)可见

φ=γ/2+δ+θ   (3)
当中频电源用于熔炼金属时,其被熔炼材料大多为铁磁材料,负载电路的谐振角频率ω随炉温升高而增大。从式(2)可知,这会导致超前触发时间
t=β/ω=(γ+δ+θ)/ω

    减少,也会使超前功率因数角φ变小,若换流重叠角γ及θ不变,这意味着晶闸管的关断恢复角δ减小,因而有可能导致逆变失败。可见,当实际恢复关断时间减小时,为确保电源的安全运行,要及时调节触发角β或超前功率因数角φ。
                      
    
    2 中频电源实现高效控制原理

    中频电源用于熔炼时,其理想运行状况应是保持熔炼期尽可能有较大的功率输出或恒功率输出,以迅速提高炉温,减少热损,缩短熔炼时间,提高单产和效率。但在实际熔炼金属过程中,由于被熔炼材料的磁导率和电导率都随温度的变化而变化,将引起负载等效电阻RH改变,使熔炼过程大部分时间达不到设计的最大输出功率(即Pdmax=UdmaxIdmax)。

    事实上,从图1(a)主电路组成框图可看出,要实现恒功率输出,只要让等效直流电阻Rd(Rd=Ud/Id)与中频负载电路阻抗匹配就行,即当RH变化时,采用某种方法使Rd不变,这样中频输出功率便不会随RH变化而变化。

    根据并联谐振中频电源Rd,RH及φ的相互关系式
Rd≈0.81cos2φRH    (4)

    可知当负载电路等效电阻RH变化时,只要调节功率角φ,就可以使Rd保持不变,从而实现高效节能。
                  
    3 晶闸管关断时间(TOT)控制电路的引用

    以德国AEG公司,英国RADYNE公司为代表的中频电源产品,都采用了TOT(turnofftime)定时控制法。其特点是按标准给定的TOT和实际TOT之间的差值及时对触发角进行调整,以便准确控制逆变晶闸管的关断恢复时间。前已述及,无论从安全运行要求,还是确保恒功率输出的要求,都希望调节触发角(即超前功率因数角φ)。为此,我们从参考文献[2]引用了“TOT”定时控制法的“超前触发脉冲形成电路”,以满足高效中频熔炼电源输出恒功率对φ角调节的要求。

    图2是TOT控制法“超前触发脉冲形成电路”框图及波形图。该电路由中频负载电路电压uH和电容支路电流信号及其转换电路,异或非门U1A,比较器B,JK触发器U3A和斜波生成电路组成。其核心部分是保证在uH过零之前的TOT时间内,比较器B产生下降沿,使JK触发器翻转,由Q及Q端输出超前触发脉冲。比较器B反相输入端接斜坡电压信号uc2;而同相输入端接角调节信号uc1。通过uc1与uc2比较(交点)确定触发脉冲位置。

图3

    4φ角的控制思想和策略

    常规并联谐振电流型中频电源一般按下列思想设计控制电路,即在升温初期,让触发角固定在某一min下,依靠调节整流桥的控制角α来提升中频电压uH;而在升温后期,则靠保持最大直流输出功率Pdmax=UdmaxIdmax完成熔炼。但由于RH的变化,使熔炼大部分时间达不到Pdmax,因而熔炼周期长,热损大,效率低。为此,可以保留升温初期的控制过程不变,而在升温后期,采

        摘要:针对常规晶闸管并联谐振中频电源存在的在熔炼期内输出功率达不到额定功率的问题,设计了一种对DC/AC逆变器采用调节功率角φ的触发控制电路,配合原有的AC/DC相控双闭环控制电路,可以使中频熔炼电源实现高效控制。

    关键词:中频电源;功率因数角φ调节;关断时间控制

    1 概述

    常规中频电源是由AC/DC可控整流器与单相DC/AC电流型并联谐振逆变器组成的,它在感应加热熔炼过程中的正常工作如图1所示,是以负载电路中的电流iH超前其电压uH为前提条件的。逆变电路中晶闸管的超前触发时间应大于晶闸管关断时间,即

t>(γ+δ)/ω   (1)
式中:γ为晶闸管换流重叠角;
δ为恢复角;
ω为中频电源角频率。
设β为超前触发角,为保证安全换流,应考虑安全裕量角θ,则

β=γ+δ+θ   (2)
负载电流iH的基波超前其电压uH的角度称为负载超前功率因数角,从图1(b)可见

φ=γ/2+δ+θ   (3)
当中频电源用于熔炼金属时,其被熔炼材料大多为铁磁材料,负载电路的谐振角频率ω随炉温升高而增大。从式(2)可知,这会导致超前触发时间
t=β/ω=(γ+δ+θ)/ω

    减少,也会使超前功率因数角φ变小,若换流重叠角γ及θ不变,这意味着晶闸管的关断恢复角δ减小,因而有可能导致逆变失败。可见,当实际恢复关断时间减小时,为确保电源的安全运行,要及时调节触发角β或超前功率因数角φ。
                      
    
    2 中频电源实现高效控制原理

    中频电源用于熔炼时,其理想运行状况应是保持熔炼期尽可能有较大的功率输出或恒功率输出,以迅速提高炉温,减少热损,缩短熔炼时间,提高单产和效率。但在实际熔炼金属过程中,由于被熔炼材料的磁导率和电导率都随温度的变化而变化,将引起负载等效电阻RH改变,使熔炼过程大部分时间达不到设计的最大输出功率(即Pdmax=UdmaxIdmax)。

    事实上,从图1(a)主电路组成框图可看出,要实现恒功率输出,只要让等效直流电阻Rd(Rd=Ud/Id)与中频负载电路阻抗匹配就行,即当RH变化时,采用某种方法使Rd不变,这样中频输出功率便不会随RH变化而变化。

    根据并联谐振中频电源Rd,RH及φ的相互关系式
Rd≈0.81cos2φRH    (4)

    可知当负载电路等效电阻RH变化时,只要调节功率角φ,就可以使Rd保持不变,从而实现高效节能。
                  
    3 晶闸管关断时间(TOT)控制电路的引用

    以德国AEG公司,英国RADYNE公司为代表的中频电源产品,都采用了TOT(turnofftime)定时控制法。其特点是按标准给定的TOT和实际TOT之间的差值及时对触发角进行调整,以便准确控制逆变晶闸管的关断恢复时间。前已述及,无论从安全运行要求,还是确保恒功率输出的要求,都希望调节触发角(即超前功率因数角φ)。为此,我们从参考文献[2]引用了“TOT”定时控制法的“超前触发脉冲形成电路”,以满足高效中频熔炼电源输出恒功率对φ角调节的要求。

    图2是TOT控制法“超前触发脉冲形成电路”框图及波形图。该电路由中频负载电路电压uH和电容支路电流信号及其转换电路,异或非门U1A,比较器B,JK触发器U3A和斜波生成电路组成。其核心部分是保证在uH过零之前的TOT时间内,比较器B产生下降沿,使JK触发器翻转,由Q及Q端输出超前触发脉冲。比较器B反相输入端接斜坡电压信号uc2;而同相输入端接角调节信号uc1。通过uc1与uc2比较(交点)确定触发脉冲位置。

图3

    4φ角的控制思想和策略

    常规并联谐振电流型中频电源一般按下列思想设计控制电路,即在升温初期,让触发角固定在某一min下,依靠调节整流桥的控制角α来提升中频电压uH;而在升温后期,则靠保持最大直流输出功率Pdmax=UdmaxIdmax完成熔炼。但由于RH的变化,使熔炼大部分时间达不到Pdmax,因而熔炼周期长,热损大,效率低。为此,可以保留升温初期的控制过程不变,而在升温后期,采

相关IC型号

热门点击

 

推荐技术资料

按钮与灯的互动实例
    现在赶快去看看这个目录卞有什么。FGA15N120AN... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!