位置:51电子网 » 技术资料 » 其它综合

传递函数的幅度近似

发布时间:2008/12/17 0:00:00 访问次数:1167


  1.频率归一化

  在设计滤波器的传递函数和研究滤波器的幅频特性近似问题时,为了简化计算,使计算规格化和通用化,通常采用频率归一化的处理方法。所谓频率归一化,是将传递函数复频率s=α十jω除以基准角频率ωλ,得到归一化复频率

  对于低通、高通滤波器,一般采用截止角频率(1),作为基准角频率;对于带通、带阻滤波器,一般采用中心角频率00作为基准角频率。在用波特图描述滤波器的幅频特性时,通常横坐标用归一化频率ω代替ω。

  2.传递函数的幅度近似

  在设计、研究滤波器时,通常是按通频带分类,分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器。在这4种滤波器中,常将低通滤波器作为设计滤波器的基础,高通、带通、带阻滤波器传递函数可由低通滤波器传递函数转换过来,因此,低通原型传递函数的设计是其他传递函数设计的基础。

  如图 l 所示为理想低通滤波器的幅频特性。但是这种理想的幅频特性不可能采用有限个元件组成的网络来实现,只能采用一个有理函数来近似实现。因此,需要对滤波器的幅频特性提出一个允许的变化范围,如通带增益波动范围、阻带必须达到的衰减、过渡带带宽和衰减特性等,如图2所示为幅度近似的低通幅频特性。寻找一个合适的有理函数来满足对滤波器幅频特性提出的要求,寻找这个合适的有理函数即是滤波器的幅度近似。


     图1理想低通滤波器的幅频特性幅度近似的方式有两类。           图2 幅度近似的低通幅频特性

  滤波器的幅度近似

  ①最平幅度近似,也称为泰勒近似,这种幅度近似用了泰勒级数,其幅频特性在近似范围内呈单调变化。

  ②等波纹近似9也称切比雪夫近似,这种幅度近似用了切比雪夫多项式,其幅频特性呈等幅波动。

  在通带和阻带内可分别采用这两种幅度近似方式,组合起来有4种幅度近似的方法,并有4种滤波器,分别是:巴特沃思滤波器、切比雪夫滤波器、反切比雪夫滤波器和椭圆函数滤波器。如图6-1-4所示为这4种幅度近似低通滤波器的幅频特性曲线。



                    图种幅度近似低通滤波器的幅频特性曲线


  一个n阶低通滤波器,其频率归一化的传递函数通式为

式中,k2(ω)=b1ω2十b2ω4+…+bnω2n为幅度近似方法的特征函数。采用不同的近似方法,κ(ω)为不同的多项式。

  欢迎转载,信息来自维库电子市场网(www.dzsc.com)




  1.频率归一化

  在设计滤波器的传递函数和研究滤波器的幅频特性近似问题时,为了简化计算,使计算规格化和通用化,通常采用频率归一化的处理方法。所谓频率归一化,是将传递函数复频率s=α十jω除以基准角频率ωλ,得到归一化复频率

  对于低通、高通滤波器,一般采用截止角频率(1),作为基准角频率;对于带通、带阻滤波器,一般采用中心角频率00作为基准角频率。在用波特图描述滤波器的幅频特性时,通常横坐标用归一化频率ω代替ω。

  2.传递函数的幅度近似

  在设计、研究滤波器时,通常是按通频带分类,分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器。在这4种滤波器中,常将低通滤波器作为设计滤波器的基础,高通、带通、带阻滤波器传递函数可由低通滤波器传递函数转换过来,因此,低通原型传递函数的设计是其他传递函数设计的基础。

  如图 l 所示为理想低通滤波器的幅频特性。但是这种理想的幅频特性不可能采用有限个元件组成的网络来实现,只能采用一个有理函数来近似实现。因此,需要对滤波器的幅频特性提出一个允许的变化范围,如通带增益波动范围、阻带必须达到的衰减、过渡带带宽和衰减特性等,如图2所示为幅度近似的低通幅频特性。寻找一个合适的有理函数来满足对滤波器幅频特性提出的要求,寻找这个合适的有理函数即是滤波器的幅度近似。


     图1理想低通滤波器的幅频特性幅度近似的方式有两类。           图2 幅度近似的低通幅频特性

  滤波器的幅度近似

  ①最平幅度近似,也称为泰勒近似,这种幅度近似用了泰勒级数,其幅频特性在近似范围内呈单调变化。

  ②等波纹近似9也称切比雪夫近似,这种幅度近似用了切比雪夫多项式,其幅频特性呈等幅波动。

  在通带和阻带内可分别采用这两种幅度近似方式,组合起来有4种幅度近似的方法,并有4种滤波器,分别是:巴特沃思滤波器、切比雪夫滤波器、反切比雪夫滤波器和椭圆函数滤波器。如图6-1-4所示为这4种幅度近似低通滤波器的幅频特性曲线。



                    图种幅度近似低通滤波器的幅频特性曲线


  一个n阶低通滤波器,其频率归一化的传递函数通式为

式中,k2(ω)=b1ω2十b2ω4+…+bnω2n为幅度近似方法的特征函数。采用不同的近似方法,κ(ω)为不同的多项式。

  欢迎转载,信息来自维库电子市场网(www.dzsc.com)



相关IC型号

热门点击

 

推荐技术资料

罗盘误差及补偿
    造成罗盘误差的主要因素有传感器误差、其他磁材料干扰等。... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!