位置:51电子网 » 技术资料 » 显示光电

混合集成技术在电源中的应用(图)

发布时间:2007/8/20 0:00:00 访问次数:453

摘  要: 本文针对电源技术领域,以混合集成技术为主,阐述了电力电子集成技术的基本概念、基本原理和面临的主要技术问题。并对该领域国内外研究现状和主要研究内容进行了介绍。
关键词: 电力电子集成;混合集成;封装;电源

电力电子集成概念的提出有10余年的历史,早期的思路是单片集成,体现了系统芯片(SOC)的概念,即将主电路、驱动、保护和控制电路等全部集成在同一个硅片上。由于高压、大电流的主电路元件和其他低压、小电流电路元件的制造工艺差别较大,还有高压隔离和传热的问题,故单片集成难度很大,目前仅在小功率范围有所应用。而在中大功率范围内,只能采用混合集成的办法,将多个不同工艺的器件裸片封装在一个模块内,现在广泛使用的电力电子功率模块和智能功率模块(Intelligent Power Module-IPM)都体现了这种思想。1997年前后美国政府、军方及电力电子技术领域一些著名学者共同提出电力电子积木(Power Electronic Building Block-PEBB)的概念,明确了集成化这一电力电子技术未来的发展方向,并将电力电子集成技术的研究推向高潮。

电力电子集成技术的基本概念
电源的集成化
常见的电源装置,包括直流电源和交流电源,通常构成如图2所示。
其中控制、人机界面、通信接口电路已逐步实现数字化,从而可以比较容易的实现集成化,而驱动电路和保护电路含有较多模拟电路,集成度相对较低。主电路包含开关元件、变压器、电感等磁性元件以及电容、电阻等元件,集成的难度很大。目前,电源装置中的主电路基本上以分立元件构成为主,在中小功率范围有采用单片集成元件,如TOPSwitch,或某些混合集成模块,但离全面的集成化还有很大距离。
集成化的基本思想是通过封装的手段,将主电路的部分元件和驱动、保护、控制甚至人机界面和通信接口电路都集成到一个或几个模块内,实现电源装置的全面集成化。


为什么要集成化
采用集成技术主要可以解决以下几个方面的问题:
简化设计
对电力电子技术掌握得并不十分熟练与深入的应用工程人员来说,他们可以专注于解决与具体应用有关的问题,通俗的讲,他们只需要将集成模块象积木一样拼接成系统即可。如果这一理想能够实现,可以预见,电力电子应用范围将进入前所未有的广度和宽度,足可以称得上是一次革命。


图 1 IR公司的FlipFET器件



图2  电源的结构

简化制造
大部分的元器件集成在模块内部,而标准化的集成模块是以较高的自动化程度批量制造的。因此整个制造过程的自动化程度将会大大提高,制造周期缩短,成品率提高,而成本会降低。


降低成本
勿庸置疑,集成模块的设计需要花费较多的人力和较长的设计周期,因此设计成本会较高,但具有通用性的集成模块一旦被设计出来,就可以千百次的被重复应用,分摊到每个装置和系统的设计成本很低。集成模块可以批量生产,其制造成本也会降低。


提高性能
小型化是集成技术带来的最显而易见的进步,但还远不止与此。采用紧凑的互连和封装,将使电路中的寄生电感等不利于电路工作的寄生参数显著减小,从而降低电路的开关应力和噪声,使电路的可靠性大大提高。同时,开关噪声的降低和电路的紧凑布局还将大大降低电路的电磁干扰,提高电磁兼容性。
集成所面临的问题
虽然集成技术可以带来诸多好处,但实现集成化所面临的困难也是很大的。最主要的技术问题有:
封装与互连
在分立元件构成的电路中,互连主要采用印刷电路和导线,而在集成模块内部,则较多采用微电子技术中的互连技术,如铝丝压焊、蒸镀铝膜等。但这些工艺多用于低压、小电流的集成电路的互连和封装,用于电力电子集成就存在电流承载能力不足、分布参数偏大、可靠性不够高等问题。随之而来的还有耐高电压的绝缘材料,焊接材料等很多问题。由于集成模块的制造是集成化的关键之所在,而高性能、高可靠性的封装与互连技术又是制造集成模块的前提,因此许多学者认为封装和互连技术是集成技术要解决的核心问题,是有一定道理的。目前已有的互连和封装技术还不能令人满意,因此有关的研究进行的非常集中。


图3 硬开关半桥型电路



图4 软开关不对称半桥型电路



图5  磁集成模块的结构



图6  磁集成模块的实例

电磁兼容
电力电子装置中主电路工作时会产生较强的电磁信号,可能对其驱动、控制和保护等信号处理电路产生干扰。在分立元件构成的装置中,主电路和控制电路的空间距离较大,这一问题表现得不是十分突出。在集成模块中,二者的间距小于5~10mm,因此抑制相互间的干扰变得十分重要。这在电磁场分析、电磁兼容模型、电路设计等方面提出了新的

摘  要: 本文针对电源技术领域,以混合集成技术为主,阐述了电力电子集成技术的基本概念、基本原理和面临的主要技术问题。并对该领域国内外研究现状和主要研究内容进行了介绍。
关键词: 电力电子集成;混合集成;封装;电源

电力电子集成概念的提出有10余年的历史,早期的思路是单片集成,体现了系统芯片(SOC)的概念,即将主电路、驱动、保护和控制电路等全部集成在同一个硅片上。由于高压、大电流的主电路元件和其他低压、小电流电路元件的制造工艺差别较大,还有高压隔离和传热的问题,故单片集成难度很大,目前仅在小功率范围有所应用。而在中大功率范围内,只能采用混合集成的办法,将多个不同工艺的器件裸片封装在一个模块内,现在广泛使用的电力电子功率模块和智能功率模块(Intelligent Power Module-IPM)都体现了这种思想。1997年前后美国政府、军方及电力电子技术领域一些著名学者共同提出电力电子积木(Power Electronic Building Block-PEBB)的概念,明确了集成化这一电力电子技术未来的发展方向,并将电力电子集成技术的研究推向高潮。

电力电子集成技术的基本概念
电源的集成化
常见的电源装置,包括直流电源和交流电源,通常构成如图2所示。
其中控制、人机界面、通信接口电路已逐步实现数字化,从而可以比较容易的实现集成化,而驱动电路和保护电路含有较多模拟电路,集成度相对较低。主电路包含开关元件、变压器、电感等磁性元件以及电容、电阻等元件,集成的难度很大。目前,电源装置中的主电路基本上以分立元件构成为主,在中小功率范围有采用单片集成元件,如TOPSwitch,或某些混合集成模块,但离全面的集成化还有很大距离。
集成化的基本思想是通过封装的手段,将主电路的部分元件和驱动、保护、控制甚至人机界面和通信接口电路都集成到一个或几个模块内,实现电源装置的全面集成化。


为什么要集成化
采用集成技术主要可以解决以下几个方面的问题:
简化设计
对电力电子技术掌握得并不十分熟练与深入的应用工程人员来说,他们可以专注于解决与具体应用有关的问题,通俗的讲,他们只需要将集成模块象积木一样拼接成系统即可。如果这一理想能够实现,可以预见,电力电子应用范围将进入前所未有的广度和宽度,足可以称得上是一次革命。


图 1 IR公司的FlipFET器件



图2  电源的结构

简化制造
大部分的元器件集成在模块内部,而标准化的集成模块是以较高的自动化程度批量制造的。因此整个制造过程的自动化程度将会大大提高,制造周期缩短,成品率提高,而成本会降低。


降低成本
勿庸置疑,集成模块的设计需要花费较多的人力和较长的设计周期,因此设计成本会较高,但具有通用性的集成模块一旦被设计出来,就可以千百次的被重复应用,分摊到每个装置和系统的设计成本很低。集成模块可以批量生产,其制造成本也会降低。


提高性能
小型化是集成技术带来的最显而易见的进步,但还远不止与此。采用紧凑的互连和封装,将使电路中的寄生电感等不利于电路工作的寄生参数显著减小,从而降低电路的开关应力和噪声,使电路的可靠性大大提高。同时,开关噪声的降低和电路的紧凑布局还将大大降低电路的电磁干扰,提高电磁兼容性。
集成所面临的问题
虽然集成技术可以带来诸多好处,但实现集成化所面临的困难也是很大的。最主要的技术问题有:
封装与互连
在分立元件构成的电路中,互连主要采用印刷电路和导线,而在集成模块内部,则较多采用微电子技术中的互连技术,如铝丝压焊、蒸镀铝膜等。但这些工艺多用于低压、小电流的集成电路的互连和封装,用于电力电子集成就存在电流承载能力不足、分布参数偏大、可靠性不够高等问题。随之而来的还有耐高电压的绝缘材料,焊接材料等很多问题。由于集成模块的制造是集成化的关键之所在,而高性能、高可靠性的封装与互连技术又是制造集成模块的前提,因此许多学者认为封装和互连技术是集成技术要解决的核心问题,是有一定道理的。目前已有的互连和封装技术还不能令人满意,因此有关的研究进行的非常集中。


图3 硬开关半桥型电路



图4 软开关不对称半桥型电路



图5  磁集成模块的结构



图6  磁集成模块的实例

电磁兼容
电力电子装置中主电路工作时会产生较强的电磁信号,可能对其驱动、控制和保护等信号处理电路产生干扰。在分立元件构成的装置中,主电路和控制电路的空间距离较大,这一问题表现得不是十分突出。在集成模块中,二者的间距小于5~10mm,因此抑制相互间的干扰变得十分重要。这在电磁场分析、电磁兼容模型、电路设计等方面提出了新的

相关IC型号

热门点击

 

推荐技术资料

按钮与灯的互动实例
    现在赶快去看看这个目录卞有什么。FGA15N120AN... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!