位置:51电子网 » 技术资料 » 其它综合

基于MSP430F149电机保护算法的实现

发布时间:2008/6/5 0:00:00 访问次数:602

目前,我国高压电动机的保护主要有机电式和集成电路两种,但都存在着诸多弊病,不能很好地保护电动机。其中,异步电动机的机电式保护,主要以电流增大作为判据,保护原理粗略,对断相等严重不对称故障,由于一般不出现显著的电流增大,从而使保护装置难以及时动作,造成事故扩大;集成电路式保护虽在保护原理上有所改善,但其保护特性一般无法与电动机热曲线实现较好配合,常发生拒动或误动,严重的甚至烧毁电动机。因此,研究电机保护算法具有重要的意义。

1 电动机故障分析
电动机的故障形式可分为对称和不对称两类。

对称故障包括过载、堵转和三相短路等,这类故障对电动机的损坏主要是热效应和机械应力,使绕组发热甚至损坏。其主要特征是三相仍基本对称但同时出现过电流,故障严重程度基本反映在过电流的程度,因此仍然以过流程度作为这类故障的判据。对于严重的三相短路的保护应采用速断跳闸;堵转故障的保护应采用短时限跳闸;而对于对称过载应采用及时限跳闸,反时限特性应与电动机的温升指数特性相配合。

不对称故障又可进一步分为非接地性和接地性两类。

非接地性不对称故障,主要包括断相、相间短路、匝间短路及不平衡运行等。这类故障会引起三相电流不对称。由于我国电动机的中心点不接地,故定子电流可分解为正序和负序分量(零序分量为0)。而电动机在正常运行时负序电流分量基本没有,所以采用负序电流分量作为这类故障的判据。这类故障对电动机的损害主要是负序电流引起的负序效应,可能造成电动机端部发热、转子振动及起动力矩降低等一系列问题,如果有过电流出现,还会使绕组发热。这类故障的保护应采用短时限跳闸或速断。

接地性不对称故障,包括单相接地短路和两相接地短路。由于电动机外壳必须安全接地,因此绕组端部碰壳、绝缘破坏等都可能导致接地故障,特别是处在尘埃重或湿度大的环境下,故障率就更高。发生接地性不对称故障时,会出现零序电流分量,这是区别其他任何非接地性故障的根本特征,可作为接地性故障的主要判据。这类故障应采用速断或短时限跳闸加以保护。

由以上分析和实验表明,过电流、负序和零序3个分量的不同分布组合与各故障类型之间具有很好的对应关系,表1列出了这样的对应关系。

2 电动机保护算法的提出

保护算法是用数学运算方法实现故障量的测量、分析和判断的。其基本问题是寻找适当的离散运算方法,使运算结果的精确度能满足要求,而计算耗时又尽可能短。

傅氏算法假定被采样的模拟信号是一个周期性时间函数,除基波外,还含有不衰减的直流分量和各次谐波。这种算法在dsp单片机上实现时,实际上是对离散的采样值进行计算。首先计算in的实部irn和虚部iin值(其中n=a,b,c):

其中:n为一个周期t中的采样数,n愈大,精度愈高。
当n=12点数时,幅值最大误差:δim ax/im=3.41%  
在单片机上作实时计算时,须在每出现一个新采样值后就计算一次,而且应对这一新采样值前的n个采样值(包括新出现的一个)同时加以运算。在运算时,对n个采样值都分别乘以不同的系数,然后求和。

计算出in的实部irn和虚部iin后,就可求得幅值in和相 位角θ为:

这样就可求得任意次谐波的振幅和相位。

定子绕组的相间短路对异步电动机来说是严重的故障,他不仅引起绕组绝缘损坏、铁芯烧毁,甚至会使供电网络电压显著降低,破坏其他设备的正常工作。所以应进行相间短路故障的保护。当然,他也归属于过流保护。这种故障会产生衰减的非周期分量(包括衰减的直流分量),同样,电动机启动时产生的涌流也会产生这种衰减的非周期分量。尽管傅氏算法对这种衰减的非周期分量有一定的抑制作用,但试验证明,如果不采取措施,最严重的情况下,由非周期分量造成的傅氏算法的计算误差可能超过10%,这么大的误差对电动机保护来说,绝不能视而不见,必须进行补偿。最简单的办法是,对输入信号先施行一次减法滤波,然后再进行傅氏计算,这样就可削弱非周期分量,减少傅氏算法的计算误差。

对于电动机保护,只需计算出基波(50hz)的电流信号。而其他干扰信号(如各次谐波及各种噪声)必须滤掉。 
 
在a/d前用一个无源的alf(模拟低通滤波器)滤掉9次以上的高次谐波。在用a/d或vfc进行离散化后,采用傅氏算法。该算法本身具有较强的滤波作用(可以滤去各次谐波),如果在傅氏算法前再用减法滤波,滤去衰减的非周期分量,就无需另外采用别的数字滤波算法了。

3 硬件实现框图

硬件实现框图如图1所示。将三相电流经过电流电压变换器及放大部分,转化为合适电平,然后由模拟低通滤波器(alf)滤去高频分量。alf选用无源低通滤波器即可,其作用是消除频率混叠问题,即为了满足采样定理,限制输入信号的最高频率,在此设计成消除7次或9次以上的谐波。然后经采样保持电路,采保电路起到这样一个作用:当多个模拟量需要同时检测时,检测系统输入通道中

目前,我国高压电动机的保护主要有机电式和集成电路两种,但都存在着诸多弊病,不能很好地保护电动机。其中,异步电动机的机电式保护,主要以电流增大作为判据,保护原理粗略,对断相等严重不对称故障,由于一般不出现显著的电流增大,从而使保护装置难以及时动作,造成事故扩大;集成电路式保护虽在保护原理上有所改善,但其保护特性一般无法与电动机热曲线实现较好配合,常发生拒动或误动,严重的甚至烧毁电动机。因此,研究电机保护算法具有重要的意义。

1 电动机故障分析
电动机的故障形式可分为对称和不对称两类。

对称故障包括过载、堵转和三相短路等,这类故障对电动机的损坏主要是热效应和机械应力,使绕组发热甚至损坏。其主要特征是三相仍基本对称但同时出现过电流,故障严重程度基本反映在过电流的程度,因此仍然以过流程度作为这类故障的判据。对于严重的三相短路的保护应采用速断跳闸;堵转故障的保护应采用短时限跳闸;而对于对称过载应采用及时限跳闸,反时限特性应与电动机的温升指数特性相配合。

不对称故障又可进一步分为非接地性和接地性两类。

非接地性不对称故障,主要包括断相、相间短路、匝间短路及不平衡运行等。这类故障会引起三相电流不对称。由于我国电动机的中心点不接地,故定子电流可分解为正序和负序分量(零序分量为0)。而电动机在正常运行时负序电流分量基本没有,所以采用负序电流分量作为这类故障的判据。这类故障对电动机的损害主要是负序电流引起的负序效应,可能造成电动机端部发热、转子振动及起动力矩降低等一系列问题,如果有过电流出现,还会使绕组发热。这类故障的保护应采用短时限跳闸或速断。

接地性不对称故障,包括单相接地短路和两相接地短路。由于电动机外壳必须安全接地,因此绕组端部碰壳、绝缘破坏等都可能导致接地故障,特别是处在尘埃重或湿度大的环境下,故障率就更高。发生接地性不对称故障时,会出现零序电流分量,这是区别其他任何非接地性故障的根本特征,可作为接地性故障的主要判据。这类故障应采用速断或短时限跳闸加以保护。

由以上分析和实验表明,过电流、负序和零序3个分量的不同分布组合与各故障类型之间具有很好的对应关系,表1列出了这样的对应关系。

2 电动机保护算法的提出

保护算法是用数学运算方法实现故障量的测量、分析和判断的。其基本问题是寻找适当的离散运算方法,使运算结果的精确度能满足要求,而计算耗时又尽可能短。

傅氏算法假定被采样的模拟信号是一个周期性时间函数,除基波外,还含有不衰减的直流分量和各次谐波。这种算法在dsp单片机上实现时,实际上是对离散的采样值进行计算。首先计算in的实部irn和虚部iin值(其中n=a,b,c):

其中:n为一个周期t中的采样数,n愈大,精度愈高。
当n=12点数时,幅值最大误差:δim ax/im=3.41%  
在单片机上作实时计算时,须在每出现一个新采样值后就计算一次,而且应对这一新采样值前的n个采样值(包括新出现的一个)同时加以运算。在运算时,对n个采样值都分别乘以不同的系数,然后求和。

计算出in的实部irn和虚部iin后,就可求得幅值in和相 位角θ为:

这样就可求得任意次谐波的振幅和相位。

定子绕组的相间短路对异步电动机来说是严重的故障,他不仅引起绕组绝缘损坏、铁芯烧毁,甚至会使供电网络电压显著降低,破坏其他设备的正常工作。所以应进行相间短路故障的保护。当然,他也归属于过流保护。这种故障会产生衰减的非周期分量(包括衰减的直流分量),同样,电动机启动时产生的涌流也会产生这种衰减的非周期分量。尽管傅氏算法对这种衰减的非周期分量有一定的抑制作用,但试验证明,如果不采取措施,最严重的情况下,由非周期分量造成的傅氏算法的计算误差可能超过10%,这么大的误差对电动机保护来说,绝不能视而不见,必须进行补偿。最简单的办法是,对输入信号先施行一次减法滤波,然后再进行傅氏计算,这样就可削弱非周期分量,减少傅氏算法的计算误差。

对于电动机保护,只需计算出基波(50hz)的电流信号。而其他干扰信号(如各次谐波及各种噪声)必须滤掉。 
 
在a/d前用一个无源的alf(模拟低通滤波器)滤掉9次以上的高次谐波。在用a/d或vfc进行离散化后,采用傅氏算法。该算法本身具有较强的滤波作用(可以滤去各次谐波),如果在傅氏算法前再用减法滤波,滤去衰减的非周期分量,就无需另外采用别的数字滤波算法了。

3 硬件实现框图

硬件实现框图如图1所示。将三相电流经过电流电压变换器及放大部分,转化为合适电平,然后由模拟低通滤波器(alf)滤去高频分量。alf选用无源低通滤波器即可,其作用是消除频率混叠问题,即为了满足采样定理,限制输入信号的最高频率,在此设计成消除7次或9次以上的谐波。然后经采样保持电路,采保电路起到这样一个作用:当多个模拟量需要同时检测时,检测系统输入通道中

相关IC型号

热门点击

 

推荐技术资料

罗盘误差及补偿
    造成罗盘误差的主要因素有传感器误差、其他磁材料干扰等。... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!