溅射法制备纳米薄膜材料及进展
发布时间:2008/6/5 0:00:00 访问次数:618
贾 嘉 | |||||||
(中国科学院上海技术物理研究所传感技术国家重点实验室,上海 200083) | |||||||
关键词:溅射法;纳米薄膜;材料制备 中图分类号:o484.1 文献标识码:a 文章编号:1003-353x(2004)07-0070-04 微电子器件发展的小型化趋势引导人们关注纳米科技,由于纳米电子器件的尺度为纳米级,集成度大幅度提高,同时还具有器件结构简单、可靠性强、成本低等诸多优点,被发达国家和国际大公司所重视 [1]。一旦材料能批量生产,就可研制出体积小、功耗低、速度快、存储量大的纳米芯片。但从制作单电子器件到制作纳米芯片,进而生产出纳米计算机,还有很长的路要走。因此,世界许多国家都高度重视纳米材料科学的研究。 纳米材料尺寸已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的如熔点、磁性、光学、导热、导电特性等,有着丰富的理论研究内容[2]。纳米材料的制备和应用研究是本世纪前20 年的主导技术研发目标。 2.1 制备纳米薄膜的基本理论 纳米薄膜的制备方法多种多样的,一般只要把制备常规薄膜的方法进行适当的改进,控制必要的参数就可以获得纳米薄膜[3]。在用蒸发、溅射或其他方法制备薄膜时,薄膜的形成过程大致都可分为 4个阶段,如图1所示。图1(a)在最初阶段,外来原子在基底表面相遇结合在一起成为原子团,只有当原子团达到一定数量形成“核”后,才能不断吸收新加入的原子而稳定地长大形成“岛”;图1(b)随着外来原子的增加,岛不断长大,进一步发生岛的接合;图1(c)很多岛接合起来形成通道网络结构;图1(d)后续的原子将填补网络通道间的空洞,成为连续薄膜[4]。 在薄膜的生长过程中,基片的温度对沉积原子在基片上的附着以及在其上移动等都有很大影响,是决定薄膜结构的重要条件。一般来说,基片温度越高,则吸附原子的动能也越大,跨越表面势垒的几率增多,则需要形成核的临界尺寸增大,越易引起薄膜内部的凝聚,每个小岛的形状就越接近球形,容易结晶化,高温沉积的薄膜易形成粗大的岛状组织。而在低温时,形成核的数目增加,这将有利于形成晶粒小而连续的薄膜组织,而且还增强了薄膜的附着力[5],所以寻求实现薄膜的低温成型一直是研究的方向。而等离子技术在这方面有显著优点,溅射法是其中比较常见的制备方法之一。 2.2 溅射法 离子束溅射沉积法除可以精确地控制离子束的能量、密度和入射角度来调整纳米薄膜的微观形成过程,溅射过程中的基片温度较低外还有以下优点:①可制备多种纳米金属,包括高熔点和低熔点金属,而常规的热蒸发只能适用于低熔点金属;② 能制备多组元的化合物纳米微粒,如al52ti48,cu91mn9<
关键词:溅射法;纳米薄膜;材料制备 中图分类号:o484.1 文献标识码:a 文章编号:1003-353x(2004)07-0070-04 微电子器件发展的小型化趋势引导人们关注纳米科技,由于纳米电子器件的尺度为纳米级,集成度大幅度提高,同时还具有器件结构简单、可靠性强、成本低等诸多优点,被发达国家和国际大公司所重视 [1]。一旦材料能批量生产,就可研制出体积小、功耗低、速度快、存储量大的纳米芯片。但从制作单电子器件到制作纳米芯片,进而生产出纳米计算机,还有很长的路要走。因此,世界许多国家都高度重视纳米材料科学的研究。 纳米材料尺寸已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的如熔点、磁性、光学、导热、导电特性等,有着丰富的理论研究内容[2]。纳米材料的制备和应用研究是本世纪前20 年的主导技术研发目标。 2.1 制备纳米薄膜的基本理论 纳米薄膜的制备方法多种多样的,一般只要把制备常规薄膜的方法进行适当的改进,控制必要的参数就可以获得纳米薄膜[3]。在用蒸发、溅射或其他方法制备薄膜时,薄膜的形成过程大致都可分为 4个阶段,如图1所示。图1(a)在最初阶段,外来原子在基底表面相遇结合在一起成为原子团,只有当原子团达到一定数量形成“核”后,才能不断吸收新加入的原子而稳定地长大形成“岛”;图1(b)随着外来原子的增加,岛不断长大,进一步发生岛的接合;图1(c)很多岛接合起来形成通道网络结构;图1(d)后续的原子将填补网络通道间的空洞,成为连续薄膜[4]。 在薄膜的生长过程中,基片的温度对沉积原子在基片上的附着以及在其上移动等都有很大影响,是决定薄膜结构的重要条件。一般来说,基片温度越高,则吸附原子的动能也越大,跨越表面势垒的几率增多,则需要形成核的临界尺寸增大,越易引起薄膜内部的凝聚,每个小岛的形状就越接近球形,容易结晶化,高温沉积的薄膜易形成粗大的岛状组织。而在低温时,形成核的数目增加,这将有利于形成晶粒小而连续的薄膜组织,而且还增强了薄膜的附着力[5],所以寻求实现薄膜的低温成型一直是研究的方向。而等离子技术在这方面有显著优点,溅射法是其中比较常见的制备方法之一。 2.2 溅射法 离子束溅射沉积法除可以精确地控制离子束的能量、密度和入射角度来调整纳米薄膜的微观形成过程,溅射过程中的基片温度较低外还有以下优点:①可制备多种纳米金属,包括高熔点和低熔点金属,而常规的热蒸发只能适用于低熔点金属;② 能制备多组元的化合物纳米微粒,如al52ti48,cu91mn9<
|