位置:51电子网 » 技术资料 » 其它综合

先进的阻抗与电容测量转换器

发布时间:2008/6/3 0:00:00 访问次数:488

本次在线座谈主要介绍了adi先进的阻抗与电容测量转换器的原理及应用。本文包括两部分内容:第一部分主要讨论阻抗转换器,第二部分主要讨论电容转换器。在这两部分中,我们先回顾电阻和电容测量方法的主要特点,然后介绍adi针对这两种应用推出的先进的阻抗数字转换器及电容数字转化器。

一.阻抗转换器

阻抗定义

现实世界的电路元件很复杂,除表现出电阻特性外,还会表现出电容特性和电感特性。因此引入阻抗的概念。阻抗是一个通用概念,它不仅考虑了元件在特定频率条件下的阻值,还考虑了在此频率下的相位关系。
通过测量一系列频点下的阻抗,可以获取有关待测元件的特性。这是阻抗频谱法的基础,也是许多工业、仪器仪表和汽车传感器应用的理论基础。

阻抗频谱法阻抗频谱法利用了电阻器、电感器和电容器所表现出来的不同频率特性。理想电阻器对所有频率都具有恒定的阻抗,理想电感器的阻抗会随频率增高而增大,理想电容器的阻抗会随频率增高而减小。
通过对未知元件进行扫频,如对一个化学传感器考察其阻抗与频率的关系,便可以确定它是阻性元件、感性元件还是容性元件。通常产生的响应信号的实部和虚部系数与频率的关系曲线如图1所示。


阻抗频谱法包含两个层次的应用,包括:
1 定性地确定传感器的阻抗特征。首先在正常工作的条件下确定一个元件或者传感器的特征是“正常”的,然后该系统在可接受的限制条件之下检测其阻抗特征,其典型应用是金属识别和接近检测。

2.采用阻抗频谱法定量地测量待测元件的实际阻抗参数。在这种情况下,需要建立一个等效电路模型来模拟待测元件。这种待测元件通常是一种电化学或生物医学现象,所以需要根据测量到的阻抗特征调整该等效电路以便使其与测量数据最佳匹配。采用这种方法可以对特定待测物进行分析。

阻抗频谱法的重要应用之一即阻抗分析。

典型阻抗分析系统

图2给出了典型的阻抗分析系统的简化功能框图。频率激励由dds产生,dds的输出频率在施加于未知阻抗之前通常要经过滤波和放大。利用adc对未知阻抗前、后的波形分别进行采样,然后送入dsp做进一步处理。这种简单的功能框图掩盖了几个基本问题。第一个问题,adc必须对信号在所有频率范围内进行同步采样,这样才能比较激励波形和响应波形以便获得相位信息。对此过程的优化是提高系统总性能的关键。第二个问题,因为采用了大量的分立元件,所以元件误差和温度漂移以及附加的噪声都会对测量精度产生不利的影响,尤其是在小信号工作的条件下。除了元件选择和pcb尺寸问题,大量分立元件还会给误差分析带来计算困难。

因此,adi公司开发了新的阻抗转换器结构以便解决上述问题。
阻抗转换器ad5933是一个1m采样率,12 bit分辨率的阻抗转换器,简称为idc。它解决了前面列举的诸多问题,并集成了激励电路和响应处理电路。它采用dds产生预先确定的扫频,其控制分辨率为0.1 hz,最高频率可达100 khz。利用上述频率激励未知阻抗,然后通过片内的adc对其响应波形进行数字化。

该器件的关键特点之一是它能做离散傅氏变换(dft),将每个扫频点的实部和虚部值都提供给用户。使用这些值就可以方便地计算出响应信号的幅度和相对相位信息。其工作原理是,首先将频率施加在未知的阻抗上,该阻抗可以是阻性、容性、感性或者几种的组合。用户需要外接反馈电阻来防止响应信号超过adc的量程并且保证系统的线性特性。通过电阻选择,可以测量从100 ~10 m 的阻抗,并且测量精度可达到0.5%。adc的输出会送到片内dft模块进行数字处理,以便提取出其实部和虚部。因有评估软件支持,允许将外部阻抗连接到评估板,所以很容易生成阻抗与频率的关系曲线。


电容数字转换器

单电极电容传感器的缺点

1)需要从传感器到地的虚拟电容耦合。

2)信号测量路径中存在寄生电容,所以会导致不可重复和无法预知的测量结果。

3)无法增加附加的输入保护电路。

双电极电容传感器的优点

1)它不依赖于电容对地耦合。

2)它对寄生电容不敏感,意味着它只将信号电荷传递给转换器。这样就可以实现可预知的性能和简单得多的设计。

3)设计工程师可以根据需要增加附加的输入保护电路。

电容测量方法

传统地,检测电容传感器的电荷变化的困难在于实现高性能、低成本的电容输入的信号处理前端。一般说来,电容的测量需要对电

本次在线座谈主要介绍了adi先进的阻抗与电容测量转换器的原理及应用。本文包括两部分内容:第一部分主要讨论阻抗转换器,第二部分主要讨论电容转换器。在这两部分中,我们先回顾电阻和电容测量方法的主要特点,然后介绍adi针对这两种应用推出的先进的阻抗数字转换器及电容数字转化器。

一.阻抗转换器

阻抗定义

现实世界的电路元件很复杂,除表现出电阻特性外,还会表现出电容特性和电感特性。因此引入阻抗的概念。阻抗是一个通用概念,它不仅考虑了元件在特定频率条件下的阻值,还考虑了在此频率下的相位关系。
通过测量一系列频点下的阻抗,可以获取有关待测元件的特性。这是阻抗频谱法的基础,也是许多工业、仪器仪表和汽车传感器应用的理论基础。

阻抗频谱法阻抗频谱法利用了电阻器、电感器和电容器所表现出来的不同频率特性。理想电阻器对所有频率都具有恒定的阻抗,理想电感器的阻抗会随频率增高而增大,理想电容器的阻抗会随频率增高而减小。
通过对未知元件进行扫频,如对一个化学传感器考察其阻抗与频率的关系,便可以确定它是阻性元件、感性元件还是容性元件。通常产生的响应信号的实部和虚部系数与频率的关系曲线如图1所示。


阻抗频谱法包含两个层次的应用,包括:
1 定性地确定传感器的阻抗特征。首先在正常工作的条件下确定一个元件或者传感器的特征是“正常”的,然后该系统在可接受的限制条件之下检测其阻抗特征,其典型应用是金属识别和接近检测。

2.采用阻抗频谱法定量地测量待测元件的实际阻抗参数。在这种情况下,需要建立一个等效电路模型来模拟待测元件。这种待测元件通常是一种电化学或生物医学现象,所以需要根据测量到的阻抗特征调整该等效电路以便使其与测量数据最佳匹配。采用这种方法可以对特定待测物进行分析。

阻抗频谱法的重要应用之一即阻抗分析。

典型阻抗分析系统

图2给出了典型的阻抗分析系统的简化功能框图。频率激励由dds产生,dds的输出频率在施加于未知阻抗之前通常要经过滤波和放大。利用adc对未知阻抗前、后的波形分别进行采样,然后送入dsp做进一步处理。这种简单的功能框图掩盖了几个基本问题。第一个问题,adc必须对信号在所有频率范围内进行同步采样,这样才能比较激励波形和响应波形以便获得相位信息。对此过程的优化是提高系统总性能的关键。第二个问题,因为采用了大量的分立元件,所以元件误差和温度漂移以及附加的噪声都会对测量精度产生不利的影响,尤其是在小信号工作的条件下。除了元件选择和pcb尺寸问题,大量分立元件还会给误差分析带来计算困难。

因此,adi公司开发了新的阻抗转换器结构以便解决上述问题。
阻抗转换器ad5933是一个1m采样率,12 bit分辨率的阻抗转换器,简称为idc。它解决了前面列举的诸多问题,并集成了激励电路和响应处理电路。它采用dds产生预先确定的扫频,其控制分辨率为0.1 hz,最高频率可达100 khz。利用上述频率激励未知阻抗,然后通过片内的adc对其响应波形进行数字化。

该器件的关键特点之一是它能做离散傅氏变换(dft),将每个扫频点的实部和虚部值都提供给用户。使用这些值就可以方便地计算出响应信号的幅度和相对相位信息。其工作原理是,首先将频率施加在未知的阻抗上,该阻抗可以是阻性、容性、感性或者几种的组合。用户需要外接反馈电阻来防止响应信号超过adc的量程并且保证系统的线性特性。通过电阻选择,可以测量从100 ~10 m 的阻抗,并且测量精度可达到0.5%。adc的输出会送到片内dft模块进行数字处理,以便提取出其实部和虚部。因有评估软件支持,允许将外部阻抗连接到评估板,所以很容易生成阻抗与频率的关系曲线。


电容数字转换器

单电极电容传感器的缺点

1)需要从传感器到地的虚拟电容耦合。

2)信号测量路径中存在寄生电容,所以会导致不可重复和无法预知的测量结果。

3)无法增加附加的输入保护电路。

双电极电容传感器的优点

1)它不依赖于电容对地耦合。

2)它对寄生电容不敏感,意味着它只将信号电荷传递给转换器。这样就可以实现可预知的性能和简单得多的设计。

3)设计工程师可以根据需要增加附加的输入保护电路。

电容测量方法

传统地,检测电容传感器的电荷变化的困难在于实现高性能、低成本的电容输入的信号处理前端。一般说来,电容的测量需要对电

相关IC型号

热门点击

 

推荐技术资料

罗盘误差及补偿
    造成罗盘误差的主要因素有传感器误差、其他磁材料干扰等。... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!