基于ARM核处理器的机器人手臂控制系统
发布时间:2008/6/3 0:00:00 访问次数:458
近年来,随着mems及相关技术的发展,微机器人领域已越来越来受人关注。但由于零件的尺寸很小,微机器人组件的装配需要很高的精确度,一般的装配方法无法满足要求。本文介绍了一个可进行微零件装配工作的机器人手臂控制系统的控制方法。
1系统结构
考虑到多机器人手臂的使用,整个机器人控制系统由上位机与多个下位机组成。下位机即是手臂控制器,每个下位机控制一个机械手臂的伸缩运动。上位机即为控制终端,通过不同配件组装方式生成每个手臂的位置数据,并通过数据线传输给各个下位机,由下位机控制手臂到达目标位置并进行目标操作。整个系统的结构框图如图1所示。
1.1机械结构
如图2所示,手臂控制器的机械结构由直流减速电机、手臂、螺杆、减速齿轮、角度传感器组成。机器人手臂与机械螺杆相连,螺杆与直流减速电机通过减速齿轮耦合,各个手臂控制器通过控制电机转动来达到控制手臂位置的目的。同时,手臂控制器具有手动调节旋柄与螺杆相连,需要时可通过手动调节,改变手臂位置。
1.2电路结构
手臂控制器由使用arm内核的phlipslpc2138系列微处理器控制,电路结构主要分为主控制模块、测量反馈模块和通信模块,如图3所示。通过主控制模块控制电机状态,通过测量反馈模块得到螺杆移动距离和位置,在达到规定位置后停止电机。而通信模块则完成与上位机之间的数据交换。
2电机控制
电机控制由主控制模块和测量反馈模块共同完成。
2.1主控制模块
lpc2138引脚分配如表1所示。
主控制器使用phlipslpc2138微处理器,其具有64个引脚,31个双向i/o口,2个8路10们a/d转换器,能够进行电压测量的工作,符合设计要求,其引脚分配如表1所示。电机使用ra-20gm-sd3型直流减速电机,其减速箱的减速比达到了1/1000,在减速后,电机转速为4.5+/-0.9rpm,在与1/2减速齿轮组进一步耦合后,螺杆转速为2.25rpm,在所用螺杆齿距为1mm时,手臂移动述牢为3.75×10-2mm/s。
由于本设计中电机需要正反转动,故选用了桥路驱动芯片ta8409,其具有两个输入口,两个输出口。微处理器通过控制输入电平组合即可控制电机的不同状态,包括正转、反转、刹车减速和停止状态。
它的输出电压与电机工作电压相符,即可直接驱动电机,不用增加放大电路。
电机驱动电路图如图4所示。
2.2测量反馈模块
角度传感器采用了midori的cp-2fc,它的机械角度范围为360度无限,传感器把角度变化量转化为电压量并通过电压测量电路反馈回微处理器a/d转换口,通过电压的变化量可计算得到螺杆的移动距离,这样就可以得知手臂位置,并以这个为标准对电机驱动器发送命令。
电压测量电路包含由运算放人器构成的电压跟随电路,如图5所示,它既可隔离电路,又可以完成电压跟随。
3通信模块
3.1rs-422通信标准
rs-422标准的数据信号采用差分传输方式,也称作平衡传输,其全称是“平衡电压数字接口电路的电气特性”。
其接收器采用高输入阻抗,发送驱动器有比rs232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(master),其余为从设备(salve),从发备之间不能通信,所以rs-422支持点对多的双向通信。
rs-422的最大传输距离为4000英尺(约1219m),最大传输速率为10mbit/s。
3.2数据交换功能实现
本系统通信模块采用rs-422标准,线路长度约为200m,故通信的可靠性可得到保证。差分线路驱动器使用am26ls31芯片,差分接受器使用am26ls32芯片,微处理器的串行输出口和输入口分别与驱动器输入和接收器输出相连,并使用差分开路自动故障保险终端连接配置。
差分开路自动故障保险终端连接配置图如图6所示。
从而在发送器输出端为高阻状态时保证接受器输入有至少2
近年来,随着mems及相关技术的发展,微机器人领域已越来越来受人关注。但由于零件的尺寸很小,微机器人组件的装配需要很高的精确度,一般的装配方法无法满足要求。本文介绍了一个可进行微零件装配工作的机器人手臂控制系统的控制方法。
1系统结构
考虑到多机器人手臂的使用,整个机器人控制系统由上位机与多个下位机组成。下位机即是手臂控制器,每个下位机控制一个机械手臂的伸缩运动。上位机即为控制终端,通过不同配件组装方式生成每个手臂的位置数据,并通过数据线传输给各个下位机,由下位机控制手臂到达目标位置并进行目标操作。整个系统的结构框图如图1所示。
1.1机械结构
如图2所示,手臂控制器的机械结构由直流减速电机、手臂、螺杆、减速齿轮、角度传感器组成。机器人手臂与机械螺杆相连,螺杆与直流减速电机通过减速齿轮耦合,各个手臂控制器通过控制电机转动来达到控制手臂位置的目的。同时,手臂控制器具有手动调节旋柄与螺杆相连,需要时可通过手动调节,改变手臂位置。
1.2电路结构
手臂控制器由使用arm内核的phlipslpc2138系列微处理器控制,电路结构主要分为主控制模块、测量反馈模块和通信模块,如图3所示。通过主控制模块控制电机状态,通过测量反馈模块得到螺杆移动距离和位置,在达到规定位置后停止电机。而通信模块则完成与上位机之间的数据交换。
2电机控制
电机控制由主控制模块和测量反馈模块共同完成。
2.1主控制模块
lpc2138引脚分配如表1所示。
主控制器使用phlipslpc2138微处理器,其具有64个引脚,31个双向i/o口,2个8路10们a/d转换器,能够进行电压测量的工作,符合设计要求,其引脚分配如表1所示。电机使用ra-20gm-sd3型直流减速电机,其减速箱的减速比达到了1/1000,在减速后,电机转速为4.5+/-0.9rpm,在与1/2减速齿轮组进一步耦合后,螺杆转速为2.25rpm,在所用螺杆齿距为1mm时,手臂移动述牢为3.75×10-2mm/s。
由于本设计中电机需要正反转动,故选用了桥路驱动芯片ta8409,其具有两个输入口,两个输出口。微处理器通过控制输入电平组合即可控制电机的不同状态,包括正转、反转、刹车减速和停止状态。
它的输出电压与电机工作电压相符,即可直接驱动电机,不用增加放大电路。
电机驱动电路图如图4所示。
2.2测量反馈模块
角度传感器采用了midori的cp-2fc,它的机械角度范围为360度无限,传感器把角度变化量转化为电压量并通过电压测量电路反馈回微处理器a/d转换口,通过电压的变化量可计算得到螺杆的移动距离,这样就可以得知手臂位置,并以这个为标准对电机驱动器发送命令。
电压测量电路包含由运算放人器构成的电压跟随电路,如图5所示,它既可隔离电路,又可以完成电压跟随。
3通信模块
3.1rs-422通信标准
rs-422标准的数据信号采用差分传输方式,也称作平衡传输,其全称是“平衡电压数字接口电路的电气特性”。
其接收器采用高输入阻抗,发送驱动器有比rs232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(master),其余为从设备(salve),从发备之间不能通信,所以rs-422支持点对多的双向通信。
rs-422的最大传输距离为4000英尺(约1219m),最大传输速率为10mbit/s。
3.2数据交换功能实现
本系统通信模块采用rs-422标准,线路长度约为200m,故通信的可靠性可得到保证。差分线路驱动器使用am26ls31芯片,差分接受器使用am26ls32芯片,微处理器的串行输出口和输入口分别与驱动器输入和接收器输出相连,并使用差分开路自动故障保险终端连接配置。
差分开路自动故障保险终端连接配置图如图6所示。
从而在发送器输出端为高阻状态时保证接受器输入有至少2