位置:51电子网 » 技术资料 » 其它综合

超声波流量计的测流原理及其应用

发布时间:2008/5/29 0:00:00 访问次数:324

1引言

近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。

2超声波流量计的测量原理

超声波流量计常用的测量方法为传播速度差法、多普勒法等。传播速度差法又包括直接时差法、相差法和频差法。其基本原理都是测量超声波脉冲顺水流和逆水流时速度之差来反映流体的流速,从而测出流量;多普勒法的基本原理则是应用声波中的多普勒效应测得顺水流和逆水流的频差来反映流体的流速从而得出流量。

2.1时差法测量原理

时差法测量流体流量的原理如图1所示。它利用声波在流体中传播时因流体流动方向不同而传播速度不同的特点,测量它的顺流传播时间t1和逆流传播时间t2的差值,从而计算流体流动的速度和流量。


图1超声波流量计测流原理图

设静止流体中声速为c,流体流动速度为v,把一组换能器p1、p2与管渠轴线安装成θ角,换能器的距离为l。从p1到p2顺流发射时,声波传播时间t1为:

从p2到p1逆流发射时,声波的传播时间t2为:

一般c>>v,则时差为:

单声道测试系统只适用于小型渠道水位和流速变化不大的场合。大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确的流量值,见图2。应用公式(5)、(6)可测得流量q。

以上各式中:d为垂直于水流方向上两换能器之间水平投影的距离,为声道数,s为两声道之间的过水断面面积。


图2多声道超声波流量计测流原理图

2.2多普勒法测量原理

多普勒法测量原理,是依据声波中的多普勒效应,检测其多普勒频率差。超声波发生器为一固定声源,随流体以同速度运动的固体颗粒与声源有相对运动,该固体颗粒可把入射的超声波反射回接收器。入射声波与反射声波之间的频率差就是由于流体中固体颗粒运动而产生的声波多普勒频移。由于这个频率差正比于流体流速,所以通过测量频率差就可以求得流速,进而可以得到流体流量,如图3。


图3多普勒超声波流量计测流原理图

当随流体以速度v运动的颗粒流向声波发生器时,颗粒接收到的声波频率f1为:

因此,声波接收器和发生器间的多普勒频移δf为:

以上各式中:θ为声波方向与流体流速v之间的夹角,f0为声源的初始声波频率,c为声源在介质中的传播速度。若c>>vcosθ则

式(11)、(12)是按单个颗粒考虑时,测得的流体流速和流量。但对于实际含有大量粒群的水流,则应对所有频移信号进行统计处理。超声波多普勒流量计的换能器通常采用收发一体结构,见图4。换能器接收到的反射信号只能是发生器和接收器的两个指向性波束重叠区域内颗粒的反射波,这个重叠区域称为多普勒信号的信息窗。换能器所收到的信号就是由信息窗中所有流动悬浮颗粒的反射波的叠加,即信息窗内多普勒频移为反射波叠加的平均值。

平均多普勒频移δ-f可以表示为:

式中δ-f——信息窗内所有反射粒子的多普勒频移的平均值;
σni——产生多普勒频移δfi的粒子数;
δfi——任一个悬浮粒子产生的多普勒频移。

由上可知,该流量计测得的多普勒频移信号仅反映了信息窗区域内的流体速度,因此要求信息窗应位于管渠内接近平均流速的部位,才能使其测量值反映管渠内流体的平均流速。


图4多普勒信息窗示意图

3超声波流量计的分类

3.1根据超声波声道结构类型可分为单声道和多声道超声波流量计

单声道超声

1引言

近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。

2超声波流量计的测量原理

超声波流量计常用的测量方法为传播速度差法、多普勒法等。传播速度差法又包括直接时差法、相差法和频差法。其基本原理都是测量超声波脉冲顺水流和逆水流时速度之差来反映流体的流速,从而测出流量;多普勒法的基本原理则是应用声波中的多普勒效应测得顺水流和逆水流的频差来反映流体的流速从而得出流量。

2.1时差法测量原理

时差法测量流体流量的原理如图1所示。它利用声波在流体中传播时因流体流动方向不同而传播速度不同的特点,测量它的顺流传播时间t1和逆流传播时间t2的差值,从而计算流体流动的速度和流量。


图1超声波流量计测流原理图

设静止流体中声速为c,流体流动速度为v,把一组换能器p1、p2与管渠轴线安装成θ角,换能器的距离为l。从p1到p2顺流发射时,声波传播时间t1为:

从p2到p1逆流发射时,声波的传播时间t2为:

一般c>>v,则时差为:

单声道测试系统只适用于小型渠道水位和流速变化不大的场合。大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确的流量值,见图2。应用公式(5)、(6)可测得流量q。

以上各式中:d为垂直于水流方向上两换能器之间水平投影的距离,为声道数,s为两声道之间的过水断面面积。


图2多声道超声波流量计测流原理图

2.2多普勒法测量原理

多普勒法测量原理,是依据声波中的多普勒效应,检测其多普勒频率差。超声波发生器为一固定声源,随流体以同速度运动的固体颗粒与声源有相对运动,该固体颗粒可把入射的超声波反射回接收器。入射声波与反射声波之间的频率差就是由于流体中固体颗粒运动而产生的声波多普勒频移。由于这个频率差正比于流体流速,所以通过测量频率差就可以求得流速,进而可以得到流体流量,如图3。


图3多普勒超声波流量计测流原理图

当随流体以速度v运动的颗粒流向声波发生器时,颗粒接收到的声波频率f1为:

因此,声波接收器和发生器间的多普勒频移δf为:

以上各式中:θ为声波方向与流体流速v之间的夹角,f0为声源的初始声波频率,c为声源在介质中的传播速度。若c>>vcosθ则

式(11)、(12)是按单个颗粒考虑时,测得的流体流速和流量。但对于实际含有大量粒群的水流,则应对所有频移信号进行统计处理。超声波多普勒流量计的换能器通常采用收发一体结构,见图4。换能器接收到的反射信号只能是发生器和接收器的两个指向性波束重叠区域内颗粒的反射波,这个重叠区域称为多普勒信号的信息窗。换能器所收到的信号就是由信息窗中所有流动悬浮颗粒的反射波的叠加,即信息窗内多普勒频移为反射波叠加的平均值。

平均多普勒频移δ-f可以表示为:

式中δ-f——信息窗内所有反射粒子的多普勒频移的平均值;
σni——产生多普勒频移δfi的粒子数;
δfi——任一个悬浮粒子产生的多普勒频移。

由上可知,该流量计测得的多普勒频移信号仅反映了信息窗区域内的流体速度,因此要求信息窗应位于管渠内接近平均流速的部位,才能使其测量值反映管渠内流体的平均流速。


图4多普勒信息窗示意图

3超声波流量计的分类

3.1根据超声波声道结构类型可分为单声道和多声道超声波流量计

单声道超声
相关IC型号

热门点击

 

推荐技术资料

罗盘误差及补偿
    造成罗盘误差的主要因素有传感器误差、其他磁材料干扰等。... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!