基于处理器的去方块滤波器的实现及优化
发布时间:2008/5/29 0:00:00 访问次数:301
大的量化步长会造成相对较大的量化误差,这就可能将原来相邻块“接壤”处像素间灰度的连续化变成了“台阶”变化,主观上就有”伪边缘”的方块效应。去方块效应的方法就是在保持图像总能量不变的条件下,把这些台阶状的阶跃灰度变化重新复原成台阶很小或者近似连续的灰度变化,同时还必须尽量减少对真实图像边缘的损伤。
1.2自适应滤波过程
在h.264中,去方块滤波器是按照16×16像素的宏块为单位顺序进行的,在宏块中按照每个4×4子块之间的边缘以先垂直后水平的顺序进行,从而对整个重建图像中的所有边缘(图像边缘除外)进行滤波。具体的边缘示意图如图1所示。对于16×16像素的亮度宏块,共有4条垂直边缘,4条水平边缘,每条边缘又分为16条像素边缘。而对应8×8像素的色度宏块有垂直边缘和水平边缘各2条,每条边缘分为8条像素边缘。像素边缘是进行滤波的基本单元。
大的量化步长会造成相对较大的量化误差,这就可能将原来相邻块“接壤”处像素间灰度的连续化变成了“台阶”变化,主观上就有”伪边缘”的方块效应。去方块效应的方法就是在保持图像总能量不变的条件下,把这些台阶状的阶跃灰度变化重新复原成台阶很小或者近似连续的灰度变化,同时还必须尽量减少对真实图像边缘的损伤。
1.2自适应滤波过程
在h.264中,去方块滤波器是按照16×16像素的宏块为单位顺序进行的,在宏块中按照每个4×4子块之间的边缘以先垂直后水平的顺序进行,从而对整个重建图像中的所有边缘(图像边缘除外)进行滤波。具体的边缘示意图如图1所示。对于16×16像素的亮度宏块,共有4条垂直边缘,4条水平边缘,每条边缘又分为16条像素边缘。而对应8×8像素的色度宏块有垂直边缘和水平边缘各2条,每条边缘分为8条像素边缘。像素边缘是进行滤波的基本单元。