移相控制全桥ZVS—PWM变换器的分析与设计
发布时间:2008/5/29 0:00:00 访问次数:755
摘要:阐述了零电压开关技术(zvs)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态,给出了实验结果。着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。并且提出了相关的应用领域和今后的发展方向。
关键词:零电压开关技术;移相控制;谐振变换器
0 引言
上世纪60年代开始起步的dc/dc pwm功率变换技术出现了很大的发展。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。本文选择了全桥移相控制zvs-pwm谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200w的dc/dc变换器。
1 电路原理和各工作模态分析
1.1 电路原理
图1所示为移相控制全桥zvs—pwm谐振变换器电路拓扑。vin为输入直流电压。si(i=1.2.3,4)为第i个参数相同的功率mos开关管。di和gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。s1和s3构成超前臂,s2和s4构成滞后臂。为了防止桥臂直通短路,s1和s3,s2和s4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。s1和s4,s2和s3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。lf和cf构成倒l型低通滤波电路。
图2为全桥零电压开关pwm变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压vab、变压器副边电压v0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:
(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;
(2)4个开关管的输出结电容相等,即ci=cs,i=1,2,3,4,cs为常数;
(3)忽略变压器绕组及线路中的寄生电阻;
(4)滤波电感足够大。
1.2 各工作模态分析
(1)原边电流正半周功率输出过程。在t0之前,sl和s4已导通,在(t0一t1)内维持s1和s4导通,s2和s3截止。电容c2和c3被输入电源充电。变压器原边电压为vin,功率由变压器原边传送到负载。在功率输出过程中,软开关移相控制全桥电路的工作状态和普通pwm硬开关电路相同。
(2)(t1一t1′):超前臂在死区时间内的谐振过程。加到s1上的驱动脉冲变为低电平,s1由导通变为截止。电容c1和c3迅速分别充放电,与等效电感(lr+n2lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7v,使d3立即导通,为s3的零电压导通作好准备。
(3)(t1′一t3):原边电流止半周箝位续流过程。s3在驱动脉冲变为高电平后实现了零电压导通,由于d3已提前提供了原边电流的左臂续流回路,虽然两臂中点电压为零,但原边电流仍按原方向继续流动,逐步衰减。
(4)(t3-t4):s4关断后滞后臂谐振过程,t3时加到s4的驱动脉冲电压变为低电平,s4由导通变为截止,原边电流失去主要通道。c4和c2开始充放电,与谐振电感lr串联谐振。d2导通续流,为s2的零电压导通作好准备。原边电流以最大变化率从正峰值急速下降。
(5)(t4一t5):电感储能回送电网期。t4时刻d2已导通续流,下冲的电流经d2返回到电源ec,补偿了电网在全桥电路上的功耗。滞后臂死区时间应该在该时间段内结束。原边电流下冲到零点。
(6)(t5一t6):原边电流下冲过零后开始负向增大。s2和s3都已导通,形成新的电流回路,开始新的功率输出过程。但副边两整流二极管正是同时导通和急剧变换的过程,副边电压被箝位在低电平,出现占空比丢失过程。因此滞后臂死区时间设计是关键。
各时段工作模态等放电路如图3所示,图3中未画出变压器副边电路。
2 关键参数设计
2.1 死区时间设计
该变换器一个周期内有两个关键的死区时间,这两个死区时间的设计会影响到主开关管的电压应力限制和zvs的实现。为了保证每个主开关管上电压应力为输入电压的一半,s1要比s3提早关断tdeadf1,s4要比s2提早关断tdead2。如果4个开关管的输出结电容coss1~coss4是一样的,从理论上讲只要tdead>0就可以了。但实际上4个开关管的输出结电容不可能完全一致,同时为了保证可靠,此区时间的设置应该满足如下的条件:s1上的电压到
摘要:阐述了零电压开关技术(zvs)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态,给出了实验结果。着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。并且提出了相关的应用领域和今后的发展方向。
关键词:零电压开关技术;移相控制;谐振变换器
0 引言
上世纪60年代开始起步的dc/dc pwm功率变换技术出现了很大的发展。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。本文选择了全桥移相控制zvs-pwm谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200w的dc/dc变换器。
1 电路原理和各工作模态分析
1.1 电路原理
图1所示为移相控制全桥zvs—pwm谐振变换器电路拓扑。vin为输入直流电压。si(i=1.2.3,4)为第i个参数相同的功率mos开关管。di和gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。s1和s3构成超前臂,s2和s4构成滞后臂。为了防止桥臂直通短路,s1和s3,s2和s4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。s1和s4,s2和s3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。lf和cf构成倒l型低通滤波电路。
图2为全桥零电压开关pwm变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压vab、变压器副边电压v0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:
(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;
(2)4个开关管的输出结电容相等,即ci=cs,i=1,2,3,4,cs为常数;
(3)忽略变压器绕组及线路中的寄生电阻;
(4)滤波电感足够大。
1.2 各工作模态分析
(1)原边电流正半周功率输出过程。在t0之前,sl和s4已导通,在(t0一t1)内维持s1和s4导通,s2和s3截止。电容c2和c3被输入电源充电。变压器原边电压为vin,功率由变压器原边传送到负载。在功率输出过程中,软开关移相控制全桥电路的工作状态和普通pwm硬开关电路相同。
(2)(t1一t1′):超前臂在死区时间内的谐振过程。加到s1上的驱动脉冲变为低电平,s1由导通变为截止。电容c1和c3迅速分别充放电,与等效电感(lr+n2lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7v,使d3立即导通,为s3的零电压导通作好准备。
(3)(t1′一t3):原边电流止半周箝位续流过程。s3在驱动脉冲变为高电平后实现了零电压导通,由于d3已提前提供了原边电流的左臂续流回路,虽然两臂中点电压为零,但原边电流仍按原方向继续流动,逐步衰减。
(4)(t3-t4):s4关断后滞后臂谐振过程,t3时加到s4的驱动脉冲电压变为低电平,s4由导通变为截止,原边电流失去主要通道。c4和c2开始充放电,与谐振电感lr串联谐振。d2导通续流,为s2的零电压导通作好准备。原边电流以最大变化率从正峰值急速下降。
(5)(t4一t5):电感储能回送电网期。t4时刻d2已导通续流,下冲的电流经d2返回到电源ec,补偿了电网在全桥电路上的功耗。滞后臂死区时间应该在该时间段内结束。原边电流下冲到零点。
(6)(t5一t6):原边电流下冲过零后开始负向增大。s2和s3都已导通,形成新的电流回路,开始新的功率输出过程。但副边两整流二极管正是同时导通和急剧变换的过程,副边电压被箝位在低电平,出现占空比丢失过程。因此滞后臂死区时间设计是关键。
各时段工作模态等放电路如图3所示,图3中未画出变压器副边电路。
2 关键参数设计
2.1 死区时间设计
该变换器一个周期内有两个关键的死区时间,这两个死区时间的设计会影响到主开关管的电压应力限制和zvs的实现。为了保证每个主开关管上电压应力为输入电压的一半,s1要比s3提早关断tdeadf1,s4要比s2提早关断tdead2。如果4个开关管的输出结电容coss1~coss4是一样的,从理论上讲只要tdead>0就可以了。但实际上4个开关管的输出结电容不可能完全一致,同时为了保证可靠,此区时间的设置应该满足如下的条件:s1上的电压到