电光调制系统设计
发布时间:2008/5/29 0:00:00 访问次数:480
当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象称为电光效应。电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间,可以在高速摄影中用做快门或在光速测量中用做光束斩波器等。在激光出现以后,电光效应的研究和应用得到迅速发展,电光器件被广泛应用在激光通信、激光测距、激光显示和光学数据处理等方面。本文提出的电光调制系统就是基于晶体的电光效应验证电光调制原理。
1 电光调制原理
电光调制是利用某些晶体材料在外加电场作用下折射率发生变化的电光效应而进行工作的。根据加在晶体上电场的方向与光束在晶体中传播的方向不同,可分为纵向调制和横向调制。电场方向与光的传播方向平行,称为纵向电光调制;电场方向与光的传播方向垂直,称为横向电光调制。横向电光调制的优点是半波电压低、驱动功率小,应用较为广泛。本电光调制系统是以铌酸锂晶体的横向调制为例。图1是一种横向电光调制的示意图。
沿z方向加电场,通光方向沿感应主轴y′方向,经起偏器后光的振动方向与z轴的夹角为45°。光进入晶体后,将分解为沿x′和z方向振动的两个分量,两者之间的折射率之差为。假定通光方向上晶体长度为l,厚度为d(即两极间的距离),则外加电压为v=ezd时,从晶体出射的两束光的相位差为:
由式(1)可以看出,只要晶体和通光波长λ确定之后,相位差△φ的大小取决于外加电压v,改变外加电压v就能使相位差△φ随电压v成比例变化。通常使用的电光晶体的主要特性之一是采用半波电压米表征(当两光波间的相位差△φ为π弧度时所需要的外加电压称为半波电压)。
2 电光调制系统总体设计
基于电光调制原理设计出此电光调制系统,用以研究电场和光场相互作用的物理过程,也适用于光通信与物理的实验研究。电光调制系统结构见图2。
2.1 工作原理
激光器电源供给激光器正常工作的电压,确保激光器稳定工作。由激光器产生的激光经起偏器后成线偏振光。线偏振光通过电光晶体的同时,给电光晶体外加一个电压,此电压就是需要调制的信号。当给电光晶体加上电压后,晶体的折射率及其光学性能发生变化,改变了光波的偏振状态,线偏振光变成了椭圆偏振光。为了选择合适的调制工作点,在电光晶体之后插入一个λ/4波片,使通过电光晶体的两束光线的相位延迟π/2,使调制器工作在线性部分,通过检偏器检测输出光的偏振方向,最后用光电探测器检测调制后的光信号,并将其转换为电信号用示波器观察。
2.2 激光器和激光器电源
此系统中,激光器使用氦氖激光器。氦氖激光管是一种特殊的气体放电光源,与其他光源相比,它具有极好的单色性、高度的相干性和很强的方向性(发散角很小),激光器电源首先将220 v输入电压通过变压器升到1 000 v,再将该电压通过倍压电路提升到约5 000 v,然后通过限流电阻直接给激光管供电。当电源开关刚打开时,激光管中气体还没有电离,内阻相当于无穷大,此时电源输出约5 000 v高压,这就是激光管的点火电压,使得激光管中的气体电离,激光管开始工作,这时激光管的电阻将会大大下降。也就是说,负载电流上升,激光器的电源输出电压也会下降。
2.3 锂酸铌电光晶体
铌酸锂晶体具有优良的压电、电光、声光、非线性等性能。本系统中采用ln电光晶体。ln晶体是三方晶体,n1=n2=no,n3=ne。
没有加电场之前,ln的折射率椭球为:
本系统中采用y轴通光、z轴加电场,也就是说,e1=e2=0,e3=e。那么,加上电场后折射率椭球为:
式(4)表明,ln晶体沿z轴方向加电场后,可以产生横向电光效应,但是不能产生纵向电光效应。
经过晶体后,o光和e光产生的相位差为:
沿z方向加电场,通光方向沿感应主轴y′方向,经起偏器后光的振动方向与z轴的夹角为45°。光进入晶体后,将分解为沿x′和z方向振动的两个分量,两者之间的折射率之差为。假定通光方向上晶体长度为l,厚度为d(即两极间的距离),则外加电压为v=ezd时,从晶体出射的两束光的相位差为:
由式(1)可以看出,只要晶体和通光波长λ确定之后,相位差△φ的大小取决于外加电压v,改变外加电压v就能使相位差△φ随电压v成比例变化。通常使用的电光晶体的主要特性之一是采用半波电压米表征(当两光波间的相位差△φ为π弧度时所需要的外加电压称为半波电压)。
2 电光调制系统总体设计
基于电光调制原理设计出此电光调制系统,用以研究电场和光场相互作用的物理过程,也适用于光通信与物理的实验研究。电光调制系统结构见图2。
2.1 工作原理
激光器电源供给激光器正常工作的电压,确保激光器稳定工作。由激光器产生的激光经起偏器后成线偏振光。线偏振光通过电光晶体的同时,给电光晶体外加一个电压,此电压就是需要调制的信号。当给电光晶体加上电压后,晶体的折射率及其光学性能发生变化,改变了光波的偏振状态,线偏振光变成了椭圆偏振光。为了选择合适的调制工作点,在电光晶体之后插入一个λ/4波片,使通过电光晶体的两束光线的相位延迟π/2,使调制器工作在线性部分,通过检偏器检测输出光的偏振方向,最后用光电探测器检测调制后的光信号,并将其转换为电信号用示波器观察。
2.2 激光器和激光器电源
此系统中,激光器使用氦氖激光器。氦氖激光管是一种特殊的气体放电光源,与其他光源相比,它具有极好的单色性、高度的相干性和很强的方向性(发散角很小),激光器电源首先将220 v输入电压通过变压器升到1 000 v,再将该电压通过倍压电路提升到约5 000 v,然后通过限流电阻直接给激光管供电。当电源开关刚打开时,激光管中气体还没有电离,内阻相当于无穷大,此时电源输出约5 000 v高压,这就是激光管的点火电压,使得激光管中的气体电离,激光管开始工作,这时激光管的电阻将会大大下降。也就是说,负载电流上升,激光器的电源输出电压也会下降。
2.3 锂酸铌电光晶体
铌酸锂晶体具有优良的压电、电光、声光、非线性等性能。本系统中采用ln电光晶体。ln晶体是三方晶体,n1=n2=no,n3=ne。
没有加电场之前,ln的折射率椭球为:
本系统中采用y轴通光、z轴加电场,也就是说,e1=e2=0,e3=e。那么,加上电场后折射率椭球为:
式(4)表明,ln晶体沿z轴方向加电场后,可以产生横向电光效应,但是不能产生纵向电光效应。
经过晶体后,o光和e光产生的相位差为: