位置:51电子网 » 技术资料 » 显示光电

次世代平面显示器ECL技术探微

发布时间:2008/5/29 0:00:00 访问次数:423

对发光溶液施加交流电压引发电气发光的ecl(electrogenerated chemiluminescence)显示器,可以迴避直流驱动有机el常见的「电极表面堆积不纯物」造成的使用寿命劣化等现象,因此立即成为相关业者高度嘱目的焦点,一般认为ecl未来可望成为符合上述条件的次世代平面显示器(图1)。

根据ecl的发光机制与比较实验结果显示,ecl常用材料polyfluorene化合物,亦即pbdohf<poly﹝9.9-bis(3,6-dioxaheptyl)fluorene-2,7-diyl﹞>的发光速度比rubrene快,此外,研究人员根据pbdohf与它的类似材料「交互共重体」的发光波长实验证实,利用共役长的长度可以控制ecl显示器的发光色彩,这意味着从探讨分子结构观点而言,未来可望加速全彩显示器的材料开发。



开发经纬

有机el显示器若与传统设有背光照明模组的液晶显示器相比较,具有轻巧、主动发光、大视角、结构简单、反应速度快、高对比、低电力消耗等特点,不过有机el显示器却面临使用寿命较短,仅能作直流驱动而且电极会堆积不纯物等结构性课题;为迴避这些问题,国外业者积极开发可作交流与直流驱动的ecl显示器,该显示器由厚度只有数μm的发光溶液构成(如图2所示),一旦对发光溶液施加数v电压,电气化学发光(ecl)显示器就能够发光。

电气化学发光显示器的特点与有机el显示器完全相同,却没有使用寿命过短的困扰,结构也更为单纯,与液晶显示器一样可以利用既有制程制作。



依据以上需求,研究人员开始探索高发光反应速度的材料与分子结构,同时建立全彩显示器必要的3色,以及可以获得白光ecl的发光控制技术。

高分子与低分子的ecl发光机制

■交流驱动

ecl的发光机制可分为三个接阶段,首先对包含ecl材料在内的溶液施加电压,此时在电极附近会引发电气化学性还原反应(阴极)与氧化反应(阳极),同时产生ecl材料的激发(radical)阴离子(anion)与阳离子(cation),接着异极性的离子(ion)开始冲突产生基底与激发状态的中性分子,最后激发状态的分子失活引发发光。

有关ecl的发光机制如图3所示,施加交流电压时会在相同电极附近引发交互的还原与氧化反应,发生还原的电极产生激发anion朝对向电极移动(图3a),电极的极性一旦反转该激发anion的移动方向也随着逆转,此时在电极附近引发氧化产生激发cation,朝对向电极移动(图3b)并与激发anion冲突引发发光(图3c、图3d)。 



■反应速度

可以显示动画的平面显示器,要求施加电压后一直到获得充分发光为止的时间──亦即「反应速度」──越短越好,目前液晶显示器与有机el显示器的反应时间分别达到m与μs等级,因此ecl显示器必须开发反应速度更快的材料。

图4是有关ecl显示器的rubrene与polyfluorene化合物,亦即pbdohf<poly〔9,9-bis(3,6-dioxaheptyl)fluorene-2,7-diyl〕>材料反应速度的比较,rubrene是典型低分子ecl显示器常用黄色发光材料;pbdohf是fluorene环的9位,具备乙醚(ether)化合物bdohf单体重合体,属于蓝色发光高分子ecl显示器用材料。



如图3所示,低分子ecl显示器的发光机制,一般认为同等的rubrene时,激发anion与激发cation的移动度可以成立;不过在pbdohf的场合,激发cation非常不稳定,因此必须考虑由溶媒分子负担,它表示激发anion与激发cation的移动度并不相同,具体而言,电极附近生成的pbdohf的激发anion为高分子,因此它的移动度很低,可能会停留在电极附近(图5a);相形之下,电极的极性反转后生成的溶媒分子的激发cation为低分子,它的移动度比高分子高(图5b),所以会立即与电极附近的pbdohf的激发anion产生冲突进而发光(图5c、图5d)。根据以上推论,研究人员认为高分子pbdohf的反应速度可望比低分子的rubrene更快。 



图6是对pbdohf的与rubrene材料构成的ecl显示器施加矩形交流电压后,电极的极性改变瞬间当作原点的发光强度初期变化特性,由图可知低分子rubrene的场合,经过1ms之后发光强度才开始上升,大约4ms后变化几乎停止;相较之下,高分子pbdohf的场合一旦施加电压发光强度立即上升,1.5ms时达到最高发光强度。

上述结果证实施加电压对发光的反应速度,高分子pbdohf比低分子rubrene快的预测完全一致,此外,pbdohf的发光强度到达极大之后开始衰减,主要原因是pbdohf的激发anion在最高发光强度时被消耗殆尽所致,它也可以视为从对向电极的激发anion供给必须一段时间所致,有关它的动作机制pbdohf的场合,显示交流驱动的发光效率比

对发光溶液施加交流电压引发电气发光的ecl(electrogenerated chemiluminescence)显示器,可以迴避直流驱动有机el常见的「电极表面堆积不纯物」造成的使用寿命劣化等现象,因此立即成为相关业者高度嘱目的焦点,一般认为ecl未来可望成为符合上述条件的次世代平面显示器(图1)。

根据ecl的发光机制与比较实验结果显示,ecl常用材料polyfluorene化合物,亦即pbdohf<poly﹝9.9-bis(3,6-dioxaheptyl)fluorene-2,7-diyl﹞>的发光速度比rubrene快,此外,研究人员根据pbdohf与它的类似材料「交互共重体」的发光波长实验证实,利用共役长的长度可以控制ecl显示器的发光色彩,这意味着从探讨分子结构观点而言,未来可望加速全彩显示器的材料开发。



开发经纬

有机el显示器若与传统设有背光照明模组的液晶显示器相比较,具有轻巧、主动发光、大视角、结构简单、反应速度快、高对比、低电力消耗等特点,不过有机el显示器却面临使用寿命较短,仅能作直流驱动而且电极会堆积不纯物等结构性课题;为迴避这些问题,国外业者积极开发可作交流与直流驱动的ecl显示器,该显示器由厚度只有数μm的发光溶液构成(如图2所示),一旦对发光溶液施加数v电压,电气化学发光(ecl)显示器就能够发光。

电气化学发光显示器的特点与有机el显示器完全相同,却没有使用寿命过短的困扰,结构也更为单纯,与液晶显示器一样可以利用既有制程制作。



依据以上需求,研究人员开始探索高发光反应速度的材料与分子结构,同时建立全彩显示器必要的3色,以及可以获得白光ecl的发光控制技术。

高分子与低分子的ecl发光机制

■交流驱动

ecl的发光机制可分为三个接阶段,首先对包含ecl材料在内的溶液施加电压,此时在电极附近会引发电气化学性还原反应(阴极)与氧化反应(阳极),同时产生ecl材料的激发(radical)阴离子(anion)与阳离子(cation),接着异极性的离子(ion)开始冲突产生基底与激发状态的中性分子,最后激发状态的分子失活引发发光。

有关ecl的发光机制如图3所示,施加交流电压时会在相同电极附近引发交互的还原与氧化反应,发生还原的电极产生激发anion朝对向电极移动(图3a),电极的极性一旦反转该激发anion的移动方向也随着逆转,此时在电极附近引发氧化产生激发cation,朝对向电极移动(图3b)并与激发anion冲突引发发光(图3c、图3d)。 



■反应速度

可以显示动画的平面显示器,要求施加电压后一直到获得充分发光为止的时间──亦即「反应速度」──越短越好,目前液晶显示器与有机el显示器的反应时间分别达到m与μs等级,因此ecl显示器必须开发反应速度更快的材料。

图4是有关ecl显示器的rubrene与polyfluorene化合物,亦即pbdohf<poly〔9,9-bis(3,6-dioxaheptyl)fluorene-2,7-diyl〕>材料反应速度的比较,rubrene是典型低分子ecl显示器常用黄色发光材料;pbdohf是fluorene环的9位,具备乙醚(ether)化合物bdohf单体重合体,属于蓝色发光高分子ecl显示器用材料。



如图3所示,低分子ecl显示器的发光机制,一般认为同等的rubrene时,激发anion与激发cation的移动度可以成立;不过在pbdohf的场合,激发cation非常不稳定,因此必须考虑由溶媒分子负担,它表示激发anion与激发cation的移动度并不相同,具体而言,电极附近生成的pbdohf的激发anion为高分子,因此它的移动度很低,可能会停留在电极附近(图5a);相形之下,电极的极性反转后生成的溶媒分子的激发cation为低分子,它的移动度比高分子高(图5b),所以会立即与电极附近的pbdohf的激发anion产生冲突进而发光(图5c、图5d)。根据以上推论,研究人员认为高分子pbdohf的反应速度可望比低分子的rubrene更快。 



图6是对pbdohf的与rubrene材料构成的ecl显示器施加矩形交流电压后,电极的极性改变瞬间当作原点的发光强度初期变化特性,由图可知低分子rubrene的场合,经过1ms之后发光强度才开始上升,大约4ms后变化几乎停止;相较之下,高分子pbdohf的场合一旦施加电压发光强度立即上升,1.5ms时达到最高发光强度。

上述结果证实施加电压对发光的反应速度,高分子pbdohf比低分子rubrene快的预测完全一致,此外,pbdohf的发光强度到达极大之后开始衰减,主要原因是pbdohf的激发anion在最高发光强度时被消耗殆尽所致,它也可以视为从对向电极的激发anion供给必须一段时间所致,有关它的动作机制pbdohf的场合,显示交流驱动的发光效率比
相关IC型号

热门点击

 

推荐技术资料

按钮与灯的互动实例
    现在赶快去看看这个目录卞有什么。FGA15N120AN... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!