位置:51电子网 » 技术资料 » 电源技术

CAN总线下的燃料电池汽车空调控制节点

发布时间:2008/5/28 0:00:00 访问次数:439

  在能源日趋紧张、空气污染日益严重的今天,开发具有自主知识产权的新型燃料电池汽车是我国汽车产业的一个重要飞跃和里程碑,也是国家重点扶持的主要领域之一。燃料电池汽车与传统燃油汽车相比具有环保、节能(氢气为燃料)、运行平稳无噪声等特点。燃料电池汽车系统的核心是它的动力系统,即燃料电池发动机,同时配备高功率锂离子电池,能够回收下坡和制动能量。整个汽车系统由若干控制单元组成,各单元通过汽车总线彼此相连,其中空调控制系统是这种新型能源汽车的一个辅助控制单元,但它也是汽车系统的一个重要组成部分。本文将给出一种采用通用微控制器(mcu)和独立can控制器和收发器为核心的智能节点,完成与汽车系统之间的通信和控制由数字信号处理器dsp2407为控制芯片的直流变转速空调控制器的运行,并且整个空调系统已成功地运行在以燃料电池为动力的试验汽车当中。

  1 can总线原理

  控制器局域网络can属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。can是1986年由bosch公司领先推出的一种最初应用于现代汽车微控制器通信的多主机局部网,实现车裁各类电子控制装置之间的信息交换。国际标准组织iso为其制订了规范can总线的国际标准,can已被公认为几种最有前途的现场总线之一,它在当今自动控制领域的发展中将发挥出越来越重要的作用。can协议建立在国际标准组织iso的开放系统互连参考模型osi基础上,主要工作在物理层、数据链路层和应用层,用户可在其基础上开发适合实际系统需要的应用层通信协议。信号的传输一般采用双绞线、同轴电缆或光纤。can总线系统通信距离远,通信速率高,最高通信速率可达1mbit/s,当信号传输距离达到10km时,仍可提供高达5kbit/s的数据传输速率。由于can总线的这一特点,使其更利于构成大系统。

  2 系统硬件设计

  2.1 空调控制系统结构

  由于整个汽车系统是一个复杂的控制系统,可以将其分成若干个模块或子系统,每个子系统负责完成一定的功能。各个控制单元都通过can总线连接在一起,构成总线型结构的局域网络。虽然can中各个节点处于对等的地位,但为了更好协调各个控制单元,以整车控制器作为核心控制单元部分,控制其他电控单元的运行和系统动力的分配。系统can总线结构图如图1所示。空调控制系统一方面作为整个汽车系统的一个子系统,同时也作为can总线上的一个节点,其主要功能是通过can总线接收主控节点的控制命令及将空调相关数据传送给主控节点,完成汽车空调的开启、温度设定、车内外温度采集等控制。空调系统与can总线上的整车控制器的通信至关重要,而空调控制部分又涉及到高压部分,为了整车系统的安全和可靠,将空调系统的can通讯部分和压缩机驱动部分分开设计,两者之间通过光电耦合器进行电气隔离,保证空调系统与整车的通讯安全、可靠。

  2.2 硬件设计

  由于空调控制系统的智能节点处理的信息量不是很大,主要完成和主控节点即整车控制器的通信,其次负责对空调控制器的控制和几路温度模拟量的采集以及显示控制,因此,选用通用性较好、开发较灵活的微控制器(mcu)和独立can控制器及can总线驱动器方案完成,智能节点硬件设计原理如图2所示。其中,智能节点中微控制器选用p89c51rx2,can接口由独立控制器sja1000和can总线驱动器pca82c250组成。sja1000作为微控制器mcu的片外扩展芯片,sja1000和mcu之间的数据传送通过mcu数据端口p0来完成,数据接收信号用中断方式,以提高数据处理的实时性。can控制器sja1000通过总线驱动器pca82c250连接在物理总线上。pca82c250器件提供对总线的差动发送能力和对can控制器的差动接受能力,采用差分驱动有助于抑制汽车等恶劣电气环境下的瞬变干扰。为增强can总线节点的抗干扰能力,sja1000的tx0和rx0并不直接与82c250的txd和rxd相连,而是通过高速光耦与82c250相连,这样就很好地实现了收发器与控制器之间的电气隔离,保护智能节点核心电路安全工作,并实现了总线上各can节点间的电气隔离。为了进一步增强系统抗干扰能力,可在总线入口处并接双向稳压管,限制线路上可能出现的短时尖峰过电压和增加共模抑制线圈以消除共模信号的干扰。此外,通信信号在线路上传输时,信号传输到导线的端点时会发生反射,反射信号会干扰正常信号的传输。为消除这种影响,可在can总线两端并接2个120ω的电阻起到匹配总线阻抗和消除反射的双重作用。若忽略这些措施,会使数据通信的抗干扰性和可靠性大大降低,甚至无法通信。

  在能源日趋紧张、空气污染日益严重的今天,开发具有自主知识产权的新型燃料电池汽车是我国汽车产业的一个重要飞跃和里程碑,也是国家重点扶持的主要领域之一。燃料电池汽车与传统燃油汽车相比具有环保、节能(氢气为燃料)、运行平稳无噪声等特点。燃料电池汽车系统的核心是它的动力系统,即燃料电池发动机,同时配备高功率锂离子电池,能够回收下坡和制动能量。整个汽车系统由若干控制单元组成,各单元通过汽车总线彼此相连,其中空调控制系统是这种新型能源汽车的一个辅助控制单元,但它也是汽车系统的一个重要组成部分。本文将给出一种采用通用微控制器(mcu)和独立can控制器和收发器为核心的智能节点,完成与汽车系统之间的通信和控制由数字信号处理器dsp2407为控制芯片的直流变转速空调控制器的运行,并且整个空调系统已成功地运行在以燃料电池为动力的试验汽车当中。

  1 can总线原理

  控制器局域网络can属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。can是1986年由bosch公司领先推出的一种最初应用于现代汽车微控制器通信的多主机局部网,实现车裁各类电子控制装置之间的信息交换。国际标准组织iso为其制订了规范can总线的国际标准,can已被公认为几种最有前途的现场总线之一,它在当今自动控制领域的发展中将发挥出越来越重要的作用。can协议建立在国际标准组织iso的开放系统互连参考模型osi基础上,主要工作在物理层、数据链路层和应用层,用户可在其基础上开发适合实际系统需要的应用层通信协议。信号的传输一般采用双绞线、同轴电缆或光纤。can总线系统通信距离远,通信速率高,最高通信速率可达1mbit/s,当信号传输距离达到10km时,仍可提供高达5kbit/s的数据传输速率。由于can总线的这一特点,使其更利于构成大系统。

  2 系统硬件设计

  2.1 空调控制系统结构

  由于整个汽车系统是一个复杂的控制系统,可以将其分成若干个模块或子系统,每个子系统负责完成一定的功能。各个控制单元都通过can总线连接在一起,构成总线型结构的局域网络。虽然can中各个节点处于对等的地位,但为了更好协调各个控制单元,以整车控制器作为核心控制单元部分,控制其他电控单元的运行和系统动力的分配。系统can总线结构图如图1所示。空调控制系统一方面作为整个汽车系统的一个子系统,同时也作为can总线上的一个节点,其主要功能是通过can总线接收主控节点的控制命令及将空调相关数据传送给主控节点,完成汽车空调的开启、温度设定、车内外温度采集等控制。空调系统与can总线上的整车控制器的通信至关重要,而空调控制部分又涉及到高压部分,为了整车系统的安全和可靠,将空调系统的can通讯部分和压缩机驱动部分分开设计,两者之间通过光电耦合器进行电气隔离,保证空调系统与整车的通讯安全、可靠。

  2.2 硬件设计

  由于空调控制系统的智能节点处理的信息量不是很大,主要完成和主控节点即整车控制器的通信,其次负责对空调控制器的控制和几路温度模拟量的采集以及显示控制,因此,选用通用性较好、开发较灵活的微控制器(mcu)和独立can控制器及can总线驱动器方案完成,智能节点硬件设计原理如图2所示。其中,智能节点中微控制器选用p89c51rx2,can接口由独立控制器sja1000和can总线驱动器pca82c250组成。sja1000作为微控制器mcu的片外扩展芯片,sja1000和mcu之间的数据传送通过mcu数据端口p0来完成,数据接收信号用中断方式,以提高数据处理的实时性。can控制器sja1000通过总线驱动器pca82c250连接在物理总线上。pca82c250器件提供对总线的差动发送能力和对can控制器的差动接受能力,采用差分驱动有助于抑制汽车等恶劣电气环境下的瞬变干扰。为增强can总线节点的抗干扰能力,sja1000的tx0和rx0并不直接与82c250的txd和rxd相连,而是通过高速光耦与82c250相连,这样就很好地实现了收发器与控制器之间的电气隔离,保护智能节点核心电路安全工作,并实现了总线上各can节点间的电气隔离。为了进一步增强系统抗干扰能力,可在总线入口处并接双向稳压管,限制线路上可能出现的短时尖峰过电压和增加共模抑制线圈以消除共模信号的干扰。此外,通信信号在线路上传输时,信号传输到导线的端点时会发生反射,反射信号会干扰正常信号的传输。为消除这种影响,可在can总线两端并接2个120ω的电阻起到匹配总线阻抗和消除反射的双重作用。若忽略这些措施,会使数据通信的抗干扰性和可靠性大大降低,甚至无法通信。

相关IC型号
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!