位置:51电子网 » 技术资料 » 嵌入式系统

将RS-485用于数字发动机控制应用

发布时间:2007/4/23 0:00:00 访问次数:451

I. 简介

数字发动机控制采用数字处理器来控制电动机的运转。一般情况下数字处理器可采用一种或多种反馈方式,使其构成一个闭环系统。这可比作模拟控制系统和开环传动系统。

许多应用都采用了数字发动机控制,包括存储设备(如:磁盘驱动器)、工业机器人、高精度半导体制造、打印机以及复印机等。


图1 :数字发动机控制框图

a. 发动机设备

数字发动机控制可采用多种类型的发动机。最常用的类型是超小功率旋转发动机。它们可以进一步分为AC、DC电刷或DC无电刷型,这主要取决于其整流方式。小型发动机的尺寸设计一般取决于框架尺寸和瓦功率。而一般像 AC 型这样较大的发动机,是根据其马力功率进行分类的。尽管旋转发动机是最常用的类型,但也可获得其他类型,如:线性发动机以及带各种传动装置的减速发动机(gearhead motor)。


图 2:旋转发动机

b. 反馈

为提供有关位置、速度、扭矩或传动系统其他动力属性的反馈,需要具备反馈传感器。最常用的反馈传感器可能是旋转编码器,它是由安装在发动机轴上、带有变化条带的转轮构成的。在发动机转动时,光传感器会检测条带的经过并生成电信号,控制器可利用这些信号来确定发动机的转动情况。其他类型的传感器为转速计、同步器和分解器,这些均是基于电感的传感器;另外还有基于电磁的霍尔效应传感器以及基于电阻的电位计。

无论采用哪种传感器方式,数字控制器必须重复采样传感器信号,以便不断了解系统的当前动力运转情况。根据系统对速度、动力响应及精度的要求,反馈采样率可超过每秒几千次采样。

c. 控制器

无论是数字控制器还是模拟控制器,都需要与系统的预定转动和实际动力进行比较,同时处理相关输入,来产生对传动装置的控制信号。如果采用数字控制器,会需要一些附加任务,包括系统启动例程、诊断程序、通信控制以及多个采样传感器。

数字控制器可能像专用计算机处理器般复杂,也可能如单芯片编程门阵列般简单。设计人员不仅可设计出具有为传动控制而优化的功能的数字信号处理器,还可设计出具有可变功能的微控制器,以便实现适应众多应用的最佳解决方案。请参见 线圈电压,1~3相如果是 DC 或AC,则可达 1kHz;如果是PWM,则可达 100kHz可达 200V,取决于发动机功率和绕组 整流信号二进制信号,通常为3相,用于根据绕组位置来确定发动机的整流可达 3kHzTTL或CMOS 逻辑 工具/负载指令专用指令信号,通常与运动轨迹保持一致专用的专用的 传动装置限制/状态限位开关、连锁装置、自动寻的传感器(homing sensor),等可达 1 kHzTTL、CMOS 或 DC,可达 24V

该表显示了任何数据传输方案都必须具有广泛的操作范围,以便适应各种数字传动控制需要。RS-485信令技术由于速率范围介于 DC~10MHz 以上,并且具有强大可靠的信号电平,因此可很好地满足大多要求。图3显示了这些信号。请注意:该图显示了单轴系统;多轴系统可共享相同的控制器并把相关机构(mechanics)连接到相同的工具或负载上。


图3:发动机控制系统中的接口(单轴)

根据特定应用的物理安排,控制器、伺服放大器、发动机和负载之间可能会有比较大的距离。除了距离之外,在设计这些系统时还应该考虑其他因素,如:电气噪声、温度和线缆故障等。尽管存在距离或环境条件干扰,但有效数据传输的目的仍是在这些部件之间提供可靠通信。

II. 数据传输问题与485的应对方法

数字传动控制应用对在实现系统部件之间有效、可靠的通信方面面临众多挑战。根据其内在性质,这会涉及到机电传动装置,而这种装置会产生电气噪声及较高的电流电平。安全性和可靠性进一步要求通信通道必须非常可靠,以便控制运动机构。另外与运动应用相伴而来的还有对线缆路由的限制,这需要更长的布线。伺服系统的稳定性对信令速率也有额外要求。

a. 环境<

I. 简介

数字发动机控制采用数字处理器来控制电动机的运转。一般情况下数字处理器可采用一种或多种反馈方式,使其构成一个闭环系统。这可比作模拟控制系统和开环传动系统。

许多应用都采用了数字发动机控制,包括存储设备(如:磁盘驱动器)、工业机器人、高精度半导体制造、打印机以及复印机等。


图1 :数字发动机控制框图

a. 发动机设备

数字发动机控制可采用多种类型的发动机。最常用的类型是超小功率旋转发动机。它们可以进一步分为AC、DC电刷或DC无电刷型,这主要取决于其整流方式。小型发动机的尺寸设计一般取决于框架尺寸和瓦功率。而一般像 AC 型这样较大的发动机,是根据其马力功率进行分类的。尽管旋转发动机是最常用的类型,但也可获得其他类型,如:线性发动机以及带各种传动装置的减速发动机(gearhead motor)。


图 2:旋转发动机

b. 反馈

为提供有关位置、速度、扭矩或传动系统其他动力属性的反馈,需要具备反馈传感器。最常用的反馈传感器可能是旋转编码器,它是由安装在发动机轴上、带有变化条带的转轮构成的。在发动机转动时,光传感器会检测条带的经过并生成电信号,控制器可利用这些信号来确定发动机的转动情况。其他类型的传感器为转速计、同步器和分解器,这些均是基于电感的传感器;另外还有基于电磁的霍尔效应传感器以及基于电阻的电位计。

无论采用哪种传感器方式,数字控制器必须重复采样传感器信号,以便不断了解系统的当前动力运转情况。根据系统对速度、动力响应及精度的要求,反馈采样率可超过每秒几千次采样。

c. 控制器

无论是数字控制器还是模拟控制器,都需要与系统的预定转动和实际动力进行比较,同时处理相关输入,来产生对传动装置的控制信号。如果采用数字控制器,会需要一些附加任务,包括系统启动例程、诊断程序、通信控制以及多个采样传感器。

数字控制器可能像专用计算机处理器般复杂,也可能如单芯片编程门阵列般简单。设计人员不仅可设计出具有为传动控制而优化的功能的数字信号处理器,还可设计出具有可变功能的微控制器,以便实现适应众多应用的最佳解决方案。请参见 线圈电压,1~3相如果是 DC 或AC,则可达 1kHz;如果是PWM,则可达 100kHz可达 200V,取决于发动机功率和绕组 整流信号二进制信号,通常为3相,用于根据绕组位置来确定发动机的整流可达 3kHzTTL或CMOS 逻辑 工具/负载指令专用指令信号,通常与运动轨迹保持一致专用的专用的 传动装置限制/状态限位开关、连锁装置、自动寻的传感器(homing sensor),等可达 1 kHzTTL、CMOS 或 DC,可达 24V

该表显示了任何数据传输方案都必须具有广泛的操作范围,以便适应各种数字传动控制需要。RS-485信令技术由于速率范围介于 DC~10MHz 以上,并且具有强大可靠的信号电平,因此可很好地满足大多要求。图3显示了这些信号。请注意:该图显示了单轴系统;多轴系统可共享相同的控制器并把相关机构(mechanics)连接到相同的工具或负载上。


图3:发动机控制系统中的接口(单轴)

根据特定应用的物理安排,控制器、伺服放大器、发动机和负载之间可能会有比较大的距离。除了距离之外,在设计这些系统时还应该考虑其他因素,如:电气噪声、温度和线缆故障等。尽管存在距离或环境条件干扰,但有效数据传输的目的仍是在这些部件之间提供可靠通信。

II. 数据传输问题与485的应对方法

数字传动控制应用对在实现系统部件之间有效、可靠的通信方面面临众多挑战。根据其内在性质,这会涉及到机电传动装置,而这种装置会产生电气噪声及较高的电流电平。安全性和可靠性进一步要求通信通道必须非常可靠,以便控制运动机构。另外与运动应用相伴而来的还有对线缆路由的限制,这需要更长的布线。伺服系统的稳定性对信令速率也有额外要求。

a. 环境<

相关IC型号
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!