CAN总线在流光放电等离子体烟气脱硫监控系统中的应用
发布时间:2007/4/23 0:00:00 访问次数:605
锅炉烟气经除尘后,温度约为150℃,然后经热交换器将其送入湿式反应器系统,气相的SO2在有NH3存在的条件下,在湿式反应器中氧化生成硫酸铵溶液而被脱除,反应后温度约为60℃。尾气经换热器与入口烟气换热后温度提高到90℃以上而被排放,反应器生成的硫酸氨溶液经热烟气干燥脱水浓缩成为固体硫酸氨化肥。
单片机外围电路、模拟控制信号输出电路、液晶显示电路和CAN通信电路等。CPU采用Intel公司的16位单片机80C196KC作为微处理器,其内部设有256字节的RAM,带有28个中断源,运算速度快,它本身还带有三路PWM输出和高速输入输出HSI和HSO,尤其适用于快速控制系统。CAN总线通信电路采用Philips公司的SJA1000独立控制器和82C250驱动器。SJA1000有基本的Basic CAN和增强的Peli CAN两种模式,全面支持具有新功能的CAN2.0B协议[4]。82C250可以提供总线的差动发送和接收功能,提高系统总线的节点驱动能力,增大通信距离、降低干扰。控制单元采用高速光耦6N137隔离各个前后通道,被隔离部分分别使用不同的电源和地线,以提高抗干扰性能。
CAN接口适配卡的结构相对比较简单,专门负责在上位微机与CAN总线之间传递消息,其结构如图4所示。从图中可以看出适配卡由微控制器电路、双口RAM电路和CAN通信控制电路三部分组成。有了前面测控节点的设计经验,这里依然选择80C196KC作为微控制器,比较常用的是采用功能相对简单的89C51(ATMEL公司的产品)[5]。选择双口RAM IDT7132作为PC机与80C196KC交换数据的通道,并采用内存映像法[6],把IDT7132数据存储器地址直接映射到PC机内存空间的高端。CAN通信部分与测控节点相同,这里不再详述。设计中若采用中断接收数据方式,应注意在SJA1000的INT引脚和VCC引脚间接一上拉电阻(约5kΩ),否则会一直处于中断状态。
3 系统软件设计
系统软件设计包括现场测控节点的数据采集与处理软件设计、CAN接口适配卡通信软件设计和上位机管理软件设计。上位机管理软件采用Visual C++编写,主要完成设备状态和工艺参数的数据采集;向测控节点发送请求修改控制参数;显示动态实时数据和历史曲线图;对历史数据进行保存和打印报表。现场测控节点软件采用80C196汇编语言编程,主要完成三项任务:一是检测系统各项物理参数以及设备的工作状态参数并传到CAN总线上,以监视系统运行状况和趋势;二是根据控制算法对相应的量进行实时控制;三是对异常状况的报警处理。CAN接口适配卡通信软件跟测控节点CAN通信软件基本相同。下面着重介绍CAN通信软件的设计。程序首先对SJA1000进行初始化,设置好工作模式、滤波功能、通信波特率和输出特性后,就处于接收中断中。在接收完毕后,对接收的信息进行处理,或响应远程帧,或调用发送子程序发送数据,或向上位机报警。在此期间若有错误发生,可以利用SJA1000方便的错误代码捕捉功能了解详细信息并启动错误处理机制。主程序流程图如图5所示。在整个通信软件设计中,SJA1000的初始化至关重要,直接关系到系统能否正常运行。其流程图如图6所示。注意,SJA1000有个测试寄存器(地址为0x09),可以通过写入并读它的数值来判断CPU与SJA1000的硬件连接是否正确。 本系统以国家863科技攻关项目为依托,在广东杰特科技发展有限公司和北京交通大学等单位开发的流光放电等离子体烟气脱硫实验平台上进行了试验和调试,系统工作稳定、高效。交直流叠加电源可以在工业规模的反应器中产生分布良好的流光放电等离子体,通过12000Nm3/h烟气量试验,在SO2初始浓度约1000ppm条件下,脱硫率>95%,满足工业实用的要求。
锅炉烟气经除尘后,温度约为150℃,然后经热交换器将其送入湿式反应器系统,气相的SO2在有NH3存在的条件下,在湿式反应器中氧化生成硫酸铵溶液而被脱除,反应后温度约为60℃。尾气经换热器与入口烟气换热后温度提高到90℃以上而被排放,反应器生成的硫酸氨溶液经热烟气干燥脱水浓缩成为固体硫酸氨化肥。
单片机外围电路、模拟控制信号输出电路、液晶显示电路和CAN通信电路等。CPU采用Intel公司的16位单片机80C196KC作为微处理器,其内部设有256字节的RAM,带有28个中断源,运算速度快,它本身还带有三路PWM输出和高速输入输出HSI和HSO,尤其适用于快速控制系统。CAN总线通信电路采用Philips公司的SJA1000独立控制器和82C250驱动器。SJA1000有基本的Basic CAN和增强的Peli CAN两种模式,全面支持具有新功能的CAN2.0B协议[4]。82C250可以提供总线的差动发送和接收功能,提高系统总线的节点驱动能力,增大通信距离、降低干扰。控制单元采用高速光耦6N137隔离各个前后通道,被隔离部分分别使用不同的电源和地线,以提高抗干扰性能。
CAN接口适配卡的结构相对比较简单,专门负责在上位微机与CAN总线之间传递消息,其结构如图4所示。从图中可以看出适配卡由微控制器电路、双口RAM电路和CAN通信控制电路三部分组成。有了前面测控节点的设计经验,这里依然选择80C196KC作为微控制器,比较常用的是采用功能相对简单的89C51(ATMEL公司的产品)[5]。选择双口RAM IDT7132作为PC机与80C196KC交换数据的通道,并采用内存映像法[6],把IDT7132数据存储器地址直接映射到PC机内存空间的高端。CAN通信部分与测控节点相同,这里不再详述。设计中若采用中断接收数据方式,应注意在SJA1000的INT引脚和VCC引脚间接一上拉电阻(约5kΩ),否则会一直处于中断状态。
3 系统软件设计
系统软件设计包括现场测控节点的数据采集与处理软件设计、CAN接口适配卡通信软件设计和上位机管理软件设计。上位机管理软件采用Visual C++编写,主要完成设备状态和工艺参数的数据采集;向测控节点发送请求修改控制参数;显示动态实时数据和历史曲线图;对历史数据进行保存和打印报表。现场测控节点软件采用80C196汇编语言编程,主要完成三项任务:一是检测系统各项物理参数以及设备的工作状态参数并传到CAN总线上,以监视系统运行状况和趋势;二是根据控制算法对相应的量进行实时控制;三是对异常状况的报警处理。CAN接口适配卡通信软件跟测控节点CAN通信软件基本相同。下面着重介绍CAN通信软件的设计。程序首先对SJA1000进行初始化,设置好工作模式、滤波功能、通信波特率和输出特性后,就处于接收中断中。在接收完毕后,对接收的信息进行处理,或响应远程帧,或调用发送子程序发送数据,或向上位机报警。在此期间若有错误发生,可以利用SJA1000方便的错误代码捕捉功能了解详细信息并启动错误处理机制。主程序流程图如图5所示。在整个通信软件设计中,SJA1000的初始化至关重要,直接关系到系统能否正常运行。其流程图如图6所示。注意,SJA1000有个测试寄存器(地址为0x09),可以通过写入并读它的数值来判断CPU与SJA1000的硬件连接是否正确。 本系统以国家863科技攻关项目为依托,在广东杰特科技发展有限公司和北京交通大学等单位开发的流光放电等离子体烟气脱硫实验平台上进行了试验和调试,系统工作稳定、高效。交直流叠加电源可以在工业规模的反应器中产生分布良好的流光放电等离子体,通过12000Nm3/h烟气量试验,在SO2初始浓度约1000ppm条件下,脱硫率>95%,满足工业实用的要求。