交通信号控制机的故障诊断与防护技术
发布时间:2007/4/23 0:00:00 访问次数:737
经调查发现,我国大部分信号机生产企业在设计生产过程中,只注重信号机功能的实现,而对信号机的故障诊断技术、抗干扰技术以及其它防护技术考虑得较少,不能很好地满足信号机实际工作环境的要求,而且国内在如何提高信号机的稳定性、可靠性以及抗干扰性等方面的研究[1-2]甚少。因此,无论是从理论上还是从实际上来说,对信号机故障诊断与防护技术进行深入细致的研究都很有必要。
1 故障诊断技术
1.1 驱动部分的故障检测与诊断
由于信号机驱动部分是功率放大电路,容易损坏,从而引起信号机执行故障,因此需要设计与之匹配的检测电路,将驱动电路的工作状态及时反馈到信号控制器,实现故障检测与故障处理的自诊断功能。信号机驱动部分的主要故障为信号灯开路、双向晶闸管开路和双向晶闸管短路三种。由于排除信号灯故障所需的工作量较大,因此进行故障诊断蛙有必需品要将信号机灯故障与双向晶闸故障区分开来。采用电流检测技术检测信号灯回路电流,可以检测到双向晶闸闸管短路故障,但不能区分信号灯开路故障和双向晶闸管开路故障;采用电压检测技术检测信号灯两端电压,不能检测到信号灯开路故障;采用电压检测技术检测双向晶管两端电压,可以检测到双向晶闸管开路故障,但不能区分信号灯开路故障和双向晶闸管短路故障。因此要实现故障的有效精确诊断,必须结合使用电流检测技术与电压检测技术。实际采用的检测电路如图1所示。
电源控制端插入绿冲突保护,通过切断绿信号灯驱动器的电源可以实现熔丝绿冲突保护。
2 防护技术
当信号机受到外界干扰时可能出现死机、程序乱飞、破坏系统参数甚至损坏机器的现象,如果信号机未采取行之有效的防护措施,将严重威胁到交叉路口的交通安全。
2.1 硬件抗干扰技术
采用硬件抗干扰技术[3]是主动抑制和切断噪声干扰的有效措施,主要采用的方法有:
(1) 接入电源滤波器
由于信号机的供电电源源于安装场所的用电网,这里通常存在着电压波动、高次谐波和脉冲干扰,因此必须在信号机电源输入端接入电源滤波器,以净化电源。电源滤波器滤波电容的大小与可能存在的干扰信号频率有关,电源滤波器的电流值由信号机的驱动负载功率决定。
(2) 合理设计印刷电路板
在信号机的印刷电路板设计过程中,除遵循印刷电路板设计的基本原则外,还有一些需要特别注意的地方。由于信号机采用多时段控制方式时,信号机选用的实时配时方案取决于系统时间,因此系统时钟的准确性对配时方案的合理性起着至关重要的作用。实际上,系统时钟的准备确不但与晶振的选取和时钟脉冲振荡电路息息相关,而且实时时钟芯片外接晶振在pcb板上的布置[4]也起着十分关键的作用。由于实时时钟芯片的振荡器输入端容易引入高频干扰,因此在PCB板上布置晶振时需要注意以下几点:晶振尽量靠近实时时钟芯片的振荡器输入端;减小晶振的焊盘大小;用环绕地线实现晶振与邻近干扰信号的隔离;实时时钟芯片远离任何产生电磁辐射的器件。因此还应尽量减少引线的长度,增加引线之间的距离,以减少寄生电容所带来的影响。
(3) 去耦电容器配置
对于抗干扰能力弱、关断时电流变化大的器件和ROM、RAM等存储器件,应在芯片的电源线和地线之间直接接入去耦电容;为减少大功率显示驱动芯片对电源波动的影响,应在尽量靠近大功率显示驱动芯片的电源端与公共场之间并联10μF的电解电容和0.1μF的陶瓷电容;为减少电磁感应干扰,大功率显示驱动芯片与数码显示器之间的信号线距离应尽量短。
(4) 光电隔离
由于光电耦合器的输出输入信号借助于光信号的传递,切断了输入电路与输出电路之间线的联系,因此光电耦合器具有较高的电气隔离和干扰抑制能力,能实现输入信号与输出信号的有效隔离。在信号机所有强电信号与弱电信号之间都采用光电隔离技术,可以达到有效抑制共模干扰和保
经调查发现,我国大部分信号机生产企业在设计生产过程中,只注重信号机功能的实现,而对信号机的故障诊断技术、抗干扰技术以及其它防护技术考虑得较少,不能很好地满足信号机实际工作环境的要求,而且国内在如何提高信号机的稳定性、可靠性以及抗干扰性等方面的研究[1-2]甚少。因此,无论是从理论上还是从实际上来说,对信号机故障诊断与防护技术进行深入细致的研究都很有必要。
1 故障诊断技术
1.1 驱动部分的故障检测与诊断
由于信号机驱动部分是功率放大电路,容易损坏,从而引起信号机执行故障,因此需要设计与之匹配的检测电路,将驱动电路的工作状态及时反馈到信号控制器,实现故障检测与故障处理的自诊断功能。信号机驱动部分的主要故障为信号灯开路、双向晶闸管开路和双向晶闸管短路三种。由于排除信号灯故障所需的工作量较大,因此进行故障诊断蛙有必需品要将信号机灯故障与双向晶闸故障区分开来。采用电流检测技术检测信号灯回路电流,可以检测到双向晶闸闸管短路故障,但不能区分信号灯开路故障和双向晶闸管开路故障;采用电压检测技术检测信号灯两端电压,不能检测到信号灯开路故障;采用电压检测技术检测双向晶管两端电压,可以检测到双向晶闸管开路故障,但不能区分信号灯开路故障和双向晶闸管短路故障。因此要实现故障的有效精确诊断,必须结合使用电流检测技术与电压检测技术。实际采用的检测电路如图1所示。
电源控制端插入绿冲突保护,通过切断绿信号灯驱动器的电源可以实现熔丝绿冲突保护。
2 防护技术
当信号机受到外界干扰时可能出现死机、程序乱飞、破坏系统参数甚至损坏机器的现象,如果信号机未采取行之有效的防护措施,将严重威胁到交叉路口的交通安全。
2.1 硬件抗干扰技术
采用硬件抗干扰技术[3]是主动抑制和切断噪声干扰的有效措施,主要采用的方法有:
(1) 接入电源滤波器
由于信号机的供电电源源于安装场所的用电网,这里通常存在着电压波动、高次谐波和脉冲干扰,因此必须在信号机电源输入端接入电源滤波器,以净化电源。电源滤波器滤波电容的大小与可能存在的干扰信号频率有关,电源滤波器的电流值由信号机的驱动负载功率决定。
(2) 合理设计印刷电路板
在信号机的印刷电路板设计过程中,除遵循印刷电路板设计的基本原则外,还有一些需要特别注意的地方。由于信号机采用多时段控制方式时,信号机选用的实时配时方案取决于系统时间,因此系统时钟的准确性对配时方案的合理性起着至关重要的作用。实际上,系统时钟的准备确不但与晶振的选取和时钟脉冲振荡电路息息相关,而且实时时钟芯片外接晶振在pcb板上的布置[4]也起着十分关键的作用。由于实时时钟芯片的振荡器输入端容易引入高频干扰,因此在PCB板上布置晶振时需要注意以下几点:晶振尽量靠近实时时钟芯片的振荡器输入端;减小晶振的焊盘大小;用环绕地线实现晶振与邻近干扰信号的隔离;实时时钟芯片远离任何产生电磁辐射的器件。因此还应尽量减少引线的长度,增加引线之间的距离,以减少寄生电容所带来的影响。
(3) 去耦电容器配置
对于抗干扰能力弱、关断时电流变化大的器件和ROM、RAM等存储器件,应在芯片的电源线和地线之间直接接入去耦电容;为减少大功率显示驱动芯片对电源波动的影响,应在尽量靠近大功率显示驱动芯片的电源端与公共场之间并联10μF的电解电容和0.1μF的陶瓷电容;为减少电磁感应干扰,大功率显示驱动芯片与数码显示器之间的信号线距离应尽量短。
(4) 光电隔离
由于光电耦合器的输出输入信号借助于光信号的传递,切断了输入电路与输出电路之间线的联系,因此光电耦合器具有较高的电气隔离和干扰抑制能力,能实现输入信号与输出信号的有效隔离。在信号机所有强电信号与弱电信号之间都采用光电隔离技术,可以达到有效抑制共模干扰和保
上一篇:双口RAM通讯在电机控制中的应用
上一篇:飞行器全静压检测系统的设计与实现