位置:51电子网 » 技术资料 » 传感与控制

冗余度TT-VGT机器人的神经网络自适应控制

发布时间:2007/4/23 0:00:00 访问次数:442

冗余度TT-VGT机器人的神经网络自适应控制

摘要:提出了采用神经网络进行模型参考自适应控制(MRAC)的方案,建立了自适应控制的状态模型,并推导出相应的自适应算法;最后对冗余度TT-VGT机器人自适应控制进行了仿真。

关键词:冗余度 TT-VGT机器人 神经网络 模型参考自适应控制

TT-VGT(Tetrahedron-Tetrahedron-Variable Geometry Truss)机器人是由多个四面体组成的变几何桁架机器人,图1所示为由N个四面体单元组成的冗余度TT-VGT机器人操作手,平面ABC为机器人的基础平台,基本单元中各杆之间由较铰连接,通过可伸缩构件li(i=1,2,…,n)的长度变化改变机构的构形。图2所示为其中的两个单元的TT-VGT机构,设平面ABC和平面BCD的夹角用中间变量qi(i=1,2,…,n)表示,qi与li(I=1,2,…,n)的关系如下[2]:

式中,d表示TT-VGT中不可伸缩构件的长度,

li表示机器人可伸缩构件的长度。

TT-VGT机器人关节驱动力F与力矩τ的关系为:

F=Bττ (2)

式中,Bτ为对角矩阵,对角元素Bτi为:

1 状态模型

机器人的自适应控制是与机器人的动力学密切相关的。机器人的动力学方程的一般形式可如下表示(不考虑外力的作用):

τ=D(q)q+C(q,q)q+G(q)q (4)

式中,D(q)∈R n×n为广义质量矩阵(惯性矩阵),

C(q,q)∈Rn×(n×n)为向心力及哥氏力作用的矩阵,

G(q)∈R n为重力矩阵,

τ∈R n表示机器人的驱动力矩。

对于TT-VGT机器人,用杆件变量li,ii,Li(i=1,2…,n)代替中间变量qi,qi,qi(i=1,2…,n)(见式(1)),则试(4)可表示为:

F=D(l)l+C(l,i)i+G(l)l (5)

式中,F∈Rn表示机器人的驱动力。

可把式(5)表示为下列状态方程:

x=A(x,t)x+B(x,t)F(7)式中,

上述机器人动力学模型就是机器人自适应控制器的调节对象。

考虑到传动装置的动力学控制系统模型如下式所示:

式中,u、l——传动装置的输入电压和位移矢量,

Ma、Ja、Ba——传动装置的驱动力矩比例系数、转动惯量和阻尼系数(对角矩阵)。

联立求解式(5)和式(9),并定义:

可求得机器人传动系统的时变非线性状态模型如下:

2 Lyapunov模式参考自适应控制器设计

定理 设系统的运动方程为:

e=Ae+Bφr (13)

φ=-RB T Per (14)

式中,e为n维向量,r为l维向量,A、B、φ分别为(n×n)、(n×m)、(m×l)维满秩矩阵,R与P分别为(m×m)、(n×n)维正定对称矩阵。

假若矩阵P满足Lyapunov方程:

PA+A TP=-Q (15)

式中,Q为(n×n)维正定对称矩阵。

同该系统的平衡点e,φ是稳定的。

如果向量r又是由l个或更多不同频率的分量所组成,那么该平衡点还是渐近稳定的。其证明可参看文献[4]。选择如下的稳定的线性定常系统为参考模型:

y=Amx+Bmr (16)

式中,y——参考模型状态矢量:

式中,∧1——含有ωi项的(n×n)对角矩阵,

∧2——含有2ξωi项的n×n对角矩阵。
式(18)表

冗余度TT-VGT机器人的神经网络自适应控制

摘要:提出了采用神经网络进行模型参考自适应控制(MRAC)的方案,建立了自适应控制的状态模型,并推导出相应的自适应算法;最后对冗余度TT-VGT机器人自适应控制进行了仿真。

关键词:冗余度 TT-VGT机器人 神经网络 模型参考自适应控制

TT-VGT(Tetrahedron-Tetrahedron-Variable Geometry Truss)机器人是由多个四面体组成的变几何桁架机器人,图1所示为由N个四面体单元组成的冗余度TT-VGT机器人操作手,平面ABC为机器人的基础平台,基本单元中各杆之间由较铰连接,通过可伸缩构件li(i=1,2,…,n)的长度变化改变机构的构形。图2所示为其中的两个单元的TT-VGT机构,设平面ABC和平面BCD的夹角用中间变量qi(i=1,2,…,n)表示,qi与li(I=1,2,…,n)的关系如下[2]:

式中,d表示TT-VGT中不可伸缩构件的长度,

li表示机器人可伸缩构件的长度。

TT-VGT机器人关节驱动力F与力矩τ的关系为:

F=Bττ (2)

式中,Bτ为对角矩阵,对角元素Bτi为:

1 状态模型

机器人的自适应控制是与机器人的动力学密切相关的。机器人的动力学方程的一般形式可如下表示(不考虑外力的作用):

τ=D(q)q+C(q,q)q+G(q)q (4)

式中,D(q)∈R n×n为广义质量矩阵(惯性矩阵),

C(q,q)∈Rn×(n×n)为向心力及哥氏力作用的矩阵,

G(q)∈R n为重力矩阵,

τ∈R n表示机器人的驱动力矩。

对于TT-VGT机器人,用杆件变量li,ii,Li(i=1,2…,n)代替中间变量qi,qi,qi(i=1,2…,n)(见式(1)),则试(4)可表示为:

F=D(l)l+C(l,i)i+G(l)l (5)

式中,F∈Rn表示机器人的驱动力。

可把式(5)表示为下列状态方程:

x=A(x,t)x+B(x,t)F(7)式中,

上述机器人动力学模型就是机器人自适应控制器的调节对象。

考虑到传动装置的动力学控制系统模型如下式所示:

式中,u、l——传动装置的输入电压和位移矢量,

Ma、Ja、Ba——传动装置的驱动力矩比例系数、转动惯量和阻尼系数(对角矩阵)。

联立求解式(5)和式(9),并定义:

可求得机器人传动系统的时变非线性状态模型如下:

2 Lyapunov模式参考自适应控制器设计

定理 设系统的运动方程为:

e=Ae+Bφr (13)

φ=-RB T Per (14)

式中,e为n维向量,r为l维向量,A、B、φ分别为(n×n)、(n×m)、(m×l)维满秩矩阵,R与P分别为(m×m)、(n×n)维正定对称矩阵。

假若矩阵P满足Lyapunov方程:

PA+A TP=-Q (15)

式中,Q为(n×n)维正定对称矩阵。

同该系统的平衡点e,φ是稳定的。

如果向量r又是由l个或更多不同频率的分量所组成,那么该平衡点还是渐近稳定的。其证明可参看文献[4]。选择如下的稳定的线性定常系统为参考模型:

y=Amx+Bmr (16)

式中,y——参考模型状态矢量:

式中,∧1——含有ωi项的(n×n)对角矩阵,

∧2——含有2ξωi项的n×n对角矩阵。
式(18)表

相关IC型号
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!