Bulter多波束矩阵在TD-SCDMA系统中的应用
发布时间:2007/4/12 0:00:00 访问次数:490
关键词:Bulter多波束矩阵 TD-SCDMA 波束赋形 移相器
在移动通信的发展中,中国丢失了第一代,错过了第二代,而TD-SCDMA(时分同步码分多址)为中国第三代移动通信的发展提供了千载难逢的机遇。TD-SCDMA系统的智能天线一般可分为两类:自适应天线系统和多波束天线系统。自适应天线系统由于跟踪信号需要依赖算法和信号处理技术,因此响应速度慢、不能实时处理信号,但是能够形成较为理想的天线波束;而多波束切换天线系统是利用多个并行波束覆盖整个用户区,波束指向固定,不需要进行复杂计算和加权,与自适应天线系统相比,波束形状简单固定,易于实现。TD-SCDMA系统的多波束智能天线由8个垂直地面放置的半波阵子组成同心圆环阵,直径为25cm,如图1所示。与全方向天线相比,它可获得8dB的增益。
1 8单元圆环Bulter多波束天线阵
多波束智能天线的波束赋形方法很多,如利用Blass多波束形成网络、Bulter多波束矩阵等。用Bulter多波束矩阵获得的每一个波束,都能得到整个天线面所提供的天线增益,所以,波束形成网络是无损的;此外,Bulter多波束形成网络形成的多个波束是相互正交的,这一特性有利于对其它复杂形状天线波瓣方向图的综合。本文通过对传统的Bulter多波束矩阵改进和优化,较好地实现了对水平面的全方位覆盖。
1.1 对Bulter多波束天线阵的改进
传统的Bulter多波束矩阵只适用于线性阵,它产生一种偶对称的波瓣,不能实现对360°水平面安全方位的覆盖。如果直接对传统的8单元圆环Bulter多波束矩阵馈电,则形成的方向图中主、副瓣不明显,如图2(a)所示,无法用于移动通信。
为了用Bulter多波束矩阵得的理想的方向图特性,实现波束的赋形,就需要对Bulter多波束矩阵进行相应地改进,如图3所示。与传统的Bulter多波束矩阵相比,它添加了8个额外的移相器,这样该圆环阵就能够产生了8个固定波束,实现对水平面的全方位覆盖,如图2(b)所示。
图2
假设在P1端口馈电,各天线阵元馈电电流相位分别为:67.5°、225°247.5°、315°、247.5°、225、427.5°、315。此时,天线阵的方向性函数为:
F1(ψ)=(I/8){exp(j(67.5°+kasin(ψ)))+exp(j(225°+kasin(ψ-45)))+exp(j(247.5°+kasin(ψ-90°)))+exp(j(315°+kasin(ψ-135°)))+exp(j(247.5°+kasin(ψ-180°)))+exp(j(255°+kasin(ψ-255°)+exp(j(447.5°+kasin(ψ-270°)))+exp(315°+kasin(ψ-135°))))
其中,I为端口馈电电流幅度,假设初相相位为零,K=2π/λ为自由空间波系,α为圆环阵半径,为α=0.4λ,天线性能最佳。同理可推出P2、P3、P4、P5、P6、P7、P8端口馈电时天线阵的方向性函数。
图4所示的直角坐标下,8个端口同时馈电时所形成的并行波束。可以看到,8个并行波束可覆盖整个360°水平面,主瓣增益高出副瓣3dB,并且主瓣与副瓣的压制比大大提高,能量主要集中在天线的主瓣上,因此,天线阵的性能远远好于未改进的Bulter网络所形成的天线阵方向图。
以上讨论均未考虑天线阵元间互耦的影响。如果考虑天线阵元间互耦的影响,那么天线的性能估受影响,并且要对天线阵的半径α重新优化。但是,天线阵的整体性能不会有太大的变化。
1.2 对Bulter多波束形成网络的优化
在实际应用中,为了减弱小区间和小区内用户间的干扰、降低呼损、调整天线阵覆盖范围,就需要对Bulter多波束形成网络进一步优化。对于图5(a)所示的二元天线阵,由方向性增强原则可知:在输入功率相同的条件下,远区M点所得到的场强,二元阵比单个阵字时增强了根号2倍。但是在其它方向上就要具体分析,对于远区N点方向,当两射线的行程差为dcosθ=λ/2时,其引起的相位差为π,表示两阵子
关键词:Bulter多波束矩阵 TD-SCDMA 波束赋形 移相器
在移动通信的发展中,中国丢失了第一代,错过了第二代,而TD-SCDMA(时分同步码分多址)为中国第三代移动通信的发展提供了千载难逢的机遇。TD-SCDMA系统的智能天线一般可分为两类:自适应天线系统和多波束天线系统。自适应天线系统由于跟踪信号需要依赖算法和信号处理技术,因此响应速度慢、不能实时处理信号,但是能够形成较为理想的天线波束;而多波束切换天线系统是利用多个并行波束覆盖整个用户区,波束指向固定,不需要进行复杂计算和加权,与自适应天线系统相比,波束形状简单固定,易于实现。TD-SCDMA系统的多波束智能天线由8个垂直地面放置的半波阵子组成同心圆环阵,直径为25cm,如图1所示。与全方向天线相比,它可获得8dB的增益。
1 8单元圆环Bulter多波束天线阵
多波束智能天线的波束赋形方法很多,如利用Blass多波束形成网络、Bulter多波束矩阵等。用Bulter多波束矩阵获得的每一个波束,都能得到整个天线面所提供的天线增益,所以,波束形成网络是无损的;此外,Bulter多波束形成网络形成的多个波束是相互正交的,这一特性有利于对其它复杂形状天线波瓣方向图的综合。本文通过对传统的Bulter多波束矩阵改进和优化,较好地实现了对水平面的全方位覆盖。
1.1 对Bulter多波束天线阵的改进
传统的Bulter多波束矩阵只适用于线性阵,它产生一种偶对称的波瓣,不能实现对360°水平面安全方位的覆盖。如果直接对传统的8单元圆环Bulter多波束矩阵馈电,则形成的方向图中主、副瓣不明显,如图2(a)所示,无法用于移动通信。
为了用Bulter多波束矩阵得的理想的方向图特性,实现波束的赋形,就需要对Bulter多波束矩阵进行相应地改进,如图3所示。与传统的Bulter多波束矩阵相比,它添加了8个额外的移相器,这样该圆环阵就能够产生了8个固定波束,实现对水平面的全方位覆盖,如图2(b)所示。
图2
假设在P1端口馈电,各天线阵元馈电电流相位分别为:67.5°、225°247.5°、315°、247.5°、225、427.5°、315。此时,天线阵的方向性函数为:
F1(ψ)=(I/8){exp(j(67.5°+kasin(ψ)))+exp(j(225°+kasin(ψ-45)))+exp(j(247.5°+kasin(ψ-90°)))+exp(j(315°+kasin(ψ-135°)))+exp(j(247.5°+kasin(ψ-180°)))+exp(j(255°+kasin(ψ-255°)+exp(j(447.5°+kasin(ψ-270°)))+exp(315°+kasin(ψ-135°))))
其中,I为端口馈电电流幅度,假设初相相位为零,K=2π/λ为自由空间波系,α为圆环阵半径,为α=0.4λ,天线性能最佳。同理可推出P2、P3、P4、P5、P6、P7、P8端口馈电时天线阵的方向性函数。
图4所示的直角坐标下,8个端口同时馈电时所形成的并行波束。可以看到,8个并行波束可覆盖整个360°水平面,主瓣增益高出副瓣3dB,并且主瓣与副瓣的压制比大大提高,能量主要集中在天线的主瓣上,因此,天线阵的性能远远好于未改进的Bulter网络所形成的天线阵方向图。
以上讨论均未考虑天线阵元间互耦的影响。如果考虑天线阵元间互耦的影响,那么天线的性能估受影响,并且要对天线阵的半径α重新优化。但是,天线阵的整体性能不会有太大的变化。
1.2 对Bulter多波束形成网络的优化
在实际应用中,为了减弱小区间和小区内用户间的干扰、降低呼损、调整天线阵覆盖范围,就需要对Bulter多波束形成网络进一步优化。对于图5(a)所示的二元天线阵,由方向性增强原则可知:在输入功率相同的条件下,远区M点所得到的场强,二元阵比单个阵字时增强了根号2倍。但是在其它方向上就要具体分析,对于远区N点方向,当两射线的行程差为dcosθ=λ/2时,其引起的相位差为π,表示两阵子
上一篇:一种无线射频收发模块的应用