位置:51电子网 » 技术资料 » 电源技术

用多相DC-DC转换器驱动高性能ASIC和微处理器

发布时间:2007/9/10 0:00:00 访问次数:480

鲁维德

    本文主要介绍驱动高性能ASIC和微处理器的多相DC-DC转换器设计方案及应用。

    多相DC-DC转换器引出

    当今的高性能ASIC和微处理器己广泛应用工控、通信航天等各个领域。但由于它的功率消耗较高,有时高达150W甚至超过,对于1V至1.5V的电源电压,这些器件所需的电流很容易超出100A。从而引起设备体积与重量大以及应用上一系列麻烦。为此,如何解决这些器件供电方案,是设计人员面临的新问题。

    而采用多相DC-DC转换器供电不乏为是一种新型高效供电技术,为什么呢?这是因为可以应用可裁减电源控制器芯片,来设计出多相DC-DC转换器,而控制器芯片上基于PLL(锁相环电路)的时钟发生器使多个器件(高性能ASIC和微处理器)能够同步工作,其裁减架构又可允许几个控制器并联且同步工作。据此就对多相DC-DC转换器设计方案(拓扑、输入纹波电流、输出纹波电压、MOSFET、电感的选择、散热等设计)及设计实例作一介绍。

    多相拓扑优势

    通常比较熟悉的单相降压调节器(转换器)其功率虽然并没有严格的限制,但是当负载电流上升至20A至30A以上时,则单相buck调节器就显得力不从心了,而多相转换器将具备明显的优势。这些优势包括:输入纹波电流很低,输入电容数量较少;由于输出纹波频率的等效倍增,使输出纹波电压也降低了;由于损耗分布在更多元件中,元件的温度也有所降低;并且外部元件的高度也降低了。

    而多相转换器实质上是多路降压调节器并联工作,即它们的开关动作保持同步,它们之间的相位差为360/n度,其中n等于相数。虽然buck调节器的并联使输出调节变得稍微复杂了一点,但这个问题很容易利用电流模式的控制器得到解决,因为这种控制器除了能调节输出电压外还能调节每个电感中的电流。

    输入纹波电流

    在选择输入电容时,面临的关键问题是输入纹波电流的处理。多相拓扑的采用使输入纹波电流大幅度降低了,使每相的输入电容只需处理更加低幅度的输人电流脉冲。另外,相位偏离也增加了电流波形的等效占空比,因而产生更低的RMS(均方根)纹波电流。表1列出的纹波电流值说明了纹波电流的降低(从单相的31.6A到8相的11.2A)和输入电容的节省情况(从单相的11只到8相的4只)。

    高K电介质的陶瓷电容不但具有很高纹波电流处理的能力并可使PCB(印制电路扳)面积很小。如,1812型外形的陶瓷电容每个的额定纹波电流高达2A至3A。对于要求成本较低的设计,则电解电容是很好的选择。

    降低输出纹波电压

    对ASIC和微处理器内核电源供电,通常要求电压精度应<2%。对于一个1.2V电源,这相当于多相转换器输出电压的误差范围为±25mV或称±25mV的输出电压窗口。而应用有源电压定位的技术可以充分利用这个输出电压窗口,即轻载时,转换器将输出电压调节到该窗口的中点以上,重载时,则将输出电压调节到窗口的中点以下。对于±25mV窗口,在轻载(重载)下将输出调节在窗口的高端(低端),那么整个输出电压窗口就可被用于响应上升(下降)阶跃负载的变化。

    大幅度的负载电流阶跃要求输出电容具有极低的ESR(等效串联电阻)以减小瞬态电压,同时还要求输出电容具有足够大的容量,以便负载向下跳变时吸收存储在主电感中的能量。有机聚合物电容比钽电容有更低的ESR,而聚合物电容具有最低的ESR和很高的容量,陶瓷电容具有出色的高频特性,但每个器件(ASIC和微处理器)的容量只是钽或聚合物电容的二分之一到四分之一。

    低侧MOSFET应并联使用

    一个12V到1.2V的转换器要求低侧MOSFET在90%的时间内导通;在此情况下导通损耗远高于开关损耗,由于这个原因,常常将二或三只MOSFET并联使用。多个MOSFET并联工作有效降低了漏源极导通电阻RDS(ON),因而降低了导通损耗。当MOSFET被关闭时,电感电流继续通过MOSFET的体二极管流通。在此条件下,MOSFET的漏极电压基本上为零,大幅度降低了开关损耗。表1给出了几种多相配置的损耗情况(从单相的6W到8相的1W)。注意低侧MOSFET的总损耗随着相数的增多而降低了(从单相的18W到8相的8W),因而降低了MOSFET的温升。

    高侧MOSFET选择

    占空比为10%时,高侧MOSFET的开关损耗远大于导通损耗。因为高侧MOSFET只在很少的时间内导通,所以导通损耗不太明显。这样,降低开关损耗比降低导通电阻更为重要。在开关过程中(tON和tOFF)需要承受一定的电压和传输电流,这个电压与电流的乘积

鲁维德

    本文主要介绍驱动高性能ASIC和微处理器的多相DC-DC转换器设计方案及应用。

    多相DC-DC转换器引出

    当今的高性能ASIC和微处理器己广泛应用工控、通信航天等各个领域。但由于它的功率消耗较高,有时高达150W甚至超过,对于1V至1.5V的电源电压,这些器件所需的电流很容易超出100A。从而引起设备体积与重量大以及应用上一系列麻烦。为此,如何解决这些器件供电方案,是设计人员面临的新问题。

    而采用多相DC-DC转换器供电不乏为是一种新型高效供电技术,为什么呢?这是因为可以应用可裁减电源控制器芯片,来设计出多相DC-DC转换器,而控制器芯片上基于PLL(锁相环电路)的时钟发生器使多个器件(高性能ASIC和微处理器)能够同步工作,其裁减架构又可允许几个控制器并联且同步工作。据此就对多相DC-DC转换器设计方案(拓扑、输入纹波电流、输出纹波电压、MOSFET、电感的选择、散热等设计)及设计实例作一介绍。

    多相拓扑优势

    通常比较熟悉的单相降压调节器(转换器)其功率虽然并没有严格的限制,但是当负载电流上升至20A至30A以上时,则单相buck调节器就显得力不从心了,而多相转换器将具备明显的优势。这些优势包括:输入纹波电流很低,输入电容数量较少;由于输出纹波频率的等效倍增,使输出纹波电压也降低了;由于损耗分布在更多元件中,元件的温度也有所降低;并且外部元件的高度也降低了。

    而多相转换器实质上是多路降压调节器并联工作,即它们的开关动作保持同步,它们之间的相位差为360/n度,其中n等于相数。虽然buck调节器的并联使输出调节变得稍微复杂了一点,但这个问题很容易利用电流模式的控制器得到解决,因为这种控制器除了能调节输出电压外还能调节每个电感中的电流。

    输入纹波电流

    在选择输入电容时,面临的关键问题是输入纹波电流的处理。多相拓扑的采用使输入纹波电流大幅度降低了,使每相的输入电容只需处理更加低幅度的输人电流脉冲。另外,相位偏离也增加了电流波形的等效占空比,因而产生更低的RMS(均方根)纹波电流。表1列出的纹波电流值说明了纹波电流的降低(从单相的31.6A到8相的11.2A)和输入电容的节省情况(从单相的11只到8相的4只)。

    高K电介质的陶瓷电容不但具有很高纹波电流处理的能力并可使PCB(印制电路扳)面积很小。如,1812型外形的陶瓷电容每个的额定纹波电流高达2A至3A。对于要求成本较低的设计,则电解电容是很好的选择。

    降低输出纹波电压

    对ASIC和微处理器内核电源供电,通常要求电压精度应<2%。对于一个1.2V电源,这相当于多相转换器输出电压的误差范围为±25mV或称±25mV的输出电压窗口。而应用有源电压定位的技术可以充分利用这个输出电压窗口,即轻载时,转换器将输出电压调节到该窗口的中点以上,重载时,则将输出电压调节到窗口的中点以下。对于±25mV窗口,在轻载(重载)下将输出调节在窗口的高端(低端),那么整个输出电压窗口就可被用于响应上升(下降)阶跃负载的变化。

    大幅度的负载电流阶跃要求输出电容具有极低的ESR(等效串联电阻)以减小瞬态电压,同时还要求输出电容具有足够大的容量,以便负载向下跳变时吸收存储在主电感中的能量。有机聚合物电容比钽电容有更低的ESR,而聚合物电容具有最低的ESR和很高的容量,陶瓷电容具有出色的高频特性,但每个器件(ASIC和微处理器)的容量只是钽或聚合物电容的二分之一到四分之一。

    低侧MOSFET应并联使用

    一个12V到1.2V的转换器要求低侧MOSFET在90%的时间内导通;在此情况下导通损耗远高于开关损耗,由于这个原因,常常将二或三只MOSFET并联使用。多个MOSFET并联工作有效降低了漏源极导通电阻RDS(ON),因而降低了导通损耗。当MOSFET被关闭时,电感电流继续通过MOSFET的体二极管流通。在此条件下,MOSFET的漏极电压基本上为零,大幅度降低了开关损耗。表1给出了几种多相配置的损耗情况(从单相的6W到8相的1W)。注意低侧MOSFET的总损耗随着相数的增多而降低了(从单相的18W到8相的8W),因而降低了MOSFET的温升。

    高侧MOSFET选择

    占空比为10%时,高侧MOSFET的开关损耗远大于导通损耗。因为高侧MOSFET只在很少的时间内导通,所以导通损耗不太明显。这样,降低开关损耗比降低导通电阻更为重要。在开关过程中(tON和tOFF)需要承受一定的电压和传输电流,这个电压与电流的乘积

相关IC型号

热门点击

 

推荐技术资料

Seeed Studio
    Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!