基于TMS320LF2407A的电动汽车用数字化充电电源
发布时间:2007/8/23 0:00:00 访问次数:613
摘要:介绍了电动汽车用数字化充电电源,它以移相全桥逆变器加二次整流电路作为主电路,重点分析了其工作原理;采用TMS320LF2407A实现控制系统硬件电路平台,并叙述了控制系统软件及数字PID控制器的设计,给出数字化充电电源的实验结果及其技术参数。数字化充电电源实现了电源的软开关和数字化控制,具有良好的输出特性和响应特性,可以满足不同动力电池的复杂充电要求。
关键词:电动汽车 充电电源 数字化控制 软开关
随着电动汽车工业的不断发展,适用于电动汽车特殊要求的动力电池也在不断发展,因此对电动汽车专用充电电源提出了更高的要求。DSP技术的日臻完善,标志着数字化技术的兴起,使得控制领域又面临着一次重大的技术变革。因此,对电动汽车专用充电电源的数字化控制技术进行研究,开发出国产电动汽车专用的数字化充电设备,对我国电动汽车的发展和普及,无疑将具有十分重要的理论意义和工程应用价值。
1 数字化充电电源的主电路构成
充电机主回路是数字化充电电源的基础,直接影响到充电电源的性能。逆变式电源体积上、重量轻;而且由于其工作频率高、具有很高的响应速度、易于实现复杂的输出特性,因此可以满足不同充电策略所要求的充电曲线。所以这里采用移相全桥逆变加二次整流的方案作为充电电源的主电路。
主电路的原理图如图1所示。图中,Vs是单相或三相交流输入经过整流滤波后得到的直接电压,Q1~Q4是功率开关管IGBT,T1是功率变压器,D1、D2是变压器二次侧数流二极管,Lf和Cf分别是输出滤波电感和滤波电容。
图2为驱动脉冲的时序图,它几乎和传统的移相控制的驱动脉冲时序图相同,只是Q2和Q4间的死区是随占空比的变化而调整的(如阴影部分所示)。当母线电压较高或负载较轻时,Q2和Q4间将获得更大的延时时间,在每半个周期中,Q1和Q4将在同一时刻开能,但Q4将首先关断,这样,Q2和Q4组成了超前桥臂,而Q1和Q3组成了滞后桥臂。
假定Q1和Q4初始时处于导通状态,在某一时刻关断Q4,则C2、C4作为缓冲电容为Q4的关断提供零电压条件。拖尾电流依然存在于Q4中,但零电压关断在很大程度上减少了它的判断损耗。Llk(指高频变压器的漏感和线路等效电感)将使C4的电压继续增长,直至Q2的反压超过30V而发生反向雪崩,此时Q2的特性类似于一个齐纳二极极管,雪崩过程持续到1/2Llkip2的能量全部在Q2上面使ip衰减到零为止。由于ip则减为零时,b点电位仍高于母线电压,其压差等于IGBT的反向雪崩电压值,因此一个较小的电流将通过Q1反向流回。这将有助于复合Q1中存储的电荷,从而使得Q1拖尾电流得以真正消除,使得Q1能够在零电流条件下关断。Q2由于加有反压而在零电压状态下完成无损耗开通。最后,当Q1完全关断后,Q3开通,下半个工作周期开始。
2 基于TMS320LF2407A的数字化控制电路硬件平台
采用数字信号处理器作为开关电源的控制器不仅可以克服分立元件过多、电路可靠性差、电路复杂等缺点,还可以解决单片集成控制器不灵活的问题;而且DSP数字处理器具有工作频率高、指令周期短等优点,并具有改进的总线结构和强大的数字处理功能。
TMS320LF2407A芯片是TI公司24X DSP控制器系列的新成员,它在电机的数字化控制方面得到广泛的应用,通过编程和外部电路的配合,完全能够实现电动汽车用充电电源的数字化控制。图3为控制系统的功能框图。控制系统以TMS320LF2407A为核心,通过外部附加电路实现系统所需要的各项控制功能:
(1)通过滤波电路对传感器输入信号进行处理,然后由ADC采样电路进行数字采样并送入中央处理器;
(2)通过偏磁检测电路进行检测,如果发现功率变压器有磁偏现象,将立刻被TMS320LF2407A捕捉到并进行相应的处理;
(3)由TMS320LF2407A直接生成有限双极性PWM控制信号,经过隔
摘要:介绍了电动汽车用数字化充电电源,它以移相全桥逆变器加二次整流电路作为主电路,重点分析了其工作原理;采用TMS320LF2407A实现控制系统硬件电路平台,并叙述了控制系统软件及数字PID控制器的设计,给出数字化充电电源的实验结果及其技术参数。数字化充电电源实现了电源的软开关和数字化控制,具有良好的输出特性和响应特性,可以满足不同动力电池的复杂充电要求。
关键词:电动汽车 充电电源 数字化控制 软开关
随着电动汽车工业的不断发展,适用于电动汽车特殊要求的动力电池也在不断发展,因此对电动汽车专用充电电源提出了更高的要求。DSP技术的日臻完善,标志着数字化技术的兴起,使得控制领域又面临着一次重大的技术变革。因此,对电动汽车专用充电电源的数字化控制技术进行研究,开发出国产电动汽车专用的数字化充电设备,对我国电动汽车的发展和普及,无疑将具有十分重要的理论意义和工程应用价值。
1 数字化充电电源的主电路构成
充电机主回路是数字化充电电源的基础,直接影响到充电电源的性能。逆变式电源体积上、重量轻;而且由于其工作频率高、具有很高的响应速度、易于实现复杂的输出特性,因此可以满足不同充电策略所要求的充电曲线。所以这里采用移相全桥逆变加二次整流的方案作为充电电源的主电路。
主电路的原理图如图1所示。图中,Vs是单相或三相交流输入经过整流滤波后得到的直接电压,Q1~Q4是功率开关管IGBT,T1是功率变压器,D1、D2是变压器二次侧数流二极管,Lf和Cf分别是输出滤波电感和滤波电容。
图2为驱动脉冲的时序图,它几乎和传统的移相控制的驱动脉冲时序图相同,只是Q2和Q4间的死区是随占空比的变化而调整的(如阴影部分所示)。当母线电压较高或负载较轻时,Q2和Q4间将获得更大的延时时间,在每半个周期中,Q1和Q4将在同一时刻开能,但Q4将首先关断,这样,Q2和Q4组成了超前桥臂,而Q1和Q3组成了滞后桥臂。
假定Q1和Q4初始时处于导通状态,在某一时刻关断Q4,则C2、C4作为缓冲电容为Q4的关断提供零电压条件。拖尾电流依然存在于Q4中,但零电压关断在很大程度上减少了它的判断损耗。Llk(指高频变压器的漏感和线路等效电感)将使C4的电压继续增长,直至Q2的反压超过30V而发生反向雪崩,此时Q2的特性类似于一个齐纳二极极管,雪崩过程持续到1/2Llkip2的能量全部在Q2上面使ip衰减到零为止。由于ip则减为零时,b点电位仍高于母线电压,其压差等于IGBT的反向雪崩电压值,因此一个较小的电流将通过Q1反向流回。这将有助于复合Q1中存储的电荷,从而使得Q1拖尾电流得以真正消除,使得Q1能够在零电流条件下关断。Q2由于加有反压而在零电压状态下完成无损耗开通。最后,当Q1完全关断后,Q3开通,下半个工作周期开始。
2 基于TMS320LF2407A的数字化控制电路硬件平台
采用数字信号处理器作为开关电源的控制器不仅可以克服分立元件过多、电路可靠性差、电路复杂等缺点,还可以解决单片集成控制器不灵活的问题;而且DSP数字处理器具有工作频率高、指令周期短等优点,并具有改进的总线结构和强大的数字处理功能。
TMS320LF2407A芯片是TI公司24X DSP控制器系列的新成员,它在电机的数字化控制方面得到广泛的应用,通过编程和外部电路的配合,完全能够实现电动汽车用充电电源的数字化控制。图3为控制系统的功能框图。控制系统以TMS320LF2407A为核心,通过外部附加电路实现系统所需要的各项控制功能:
(1)通过滤波电路对传感器输入信号进行处理,然后由ADC采样电路进行数字采样并送入中央处理器;
(2)通过偏磁检测电路进行检测,如果发现功率变压器有磁偏现象,将立刻被TMS320LF2407A捕捉到并进行相应的处理;
(3)由TMS320LF2407A直接生成有限双极性PWM控制信号,经过隔
上一篇:只需少量元件的廉价波峰检测器