基于MAX1647的大功率激光电源的设计
发布时间:2007/4/23 0:00:00 访问次数:2126
1 引言
随着二极管泵浦全固态激光器相关技术的不断发展,它在工业、国防科研、生物医学工程等领域的应用越来越广泛,对其输出功率、可靠性要求也不断提高。作为二极管泵浦全固态激光器的重要组成部分的电源,其可靠性、稳定性也就显得格外重要。二极管泵浦全固态激光器的电源功率较大,输出为大电流、低电压,工作脉冲频率较高(可达1kHz),输出电流、电压的稳定性要求很高。微小的电流扰动将影响激光器的出光质量,不当的保护可能引起巨大的损失。针对这些特点,我们选择功能强大的电源管理芯片MAX1647作为整个系统控制的核心部分,设计出完全满足要求的大功率激光器电源。
2 MAX1647电源管理芯片介绍
MAX1647是MAXIM公司的新型电源管理芯片,其内部结构如图1所示。它包括两个调整环,即一个电压调整环与一个电流调整环,实现恒流与恒压功能及相互之间的自动转换;并采用INTEL系统管理总线(SMBUS)接口,其中内部有一个6位和一个10位的D/A转换器分别用于电流和电压的预置;另外,MAX1647提供了最大为4A的电流输出。
在MAX1647的电压调整环中,通过SMBUS总线,经内部10位DAC设置预置电压,负载电压与预置电压通过GMV误差放大器进行比较放大后的误差信号输出到CCV端口,然后送到一个由二选一电路组成的恒流/恒压自动转换电路的一个端子上,其中由CCV端口输出的误差信号由内部钳位电路限制在1/4到3/4参考电压之间的;与电压调整环工作原理相类似,被钳位的电流误差信号由CCI端口送到自动转换电路的另一个端子上;利用PWM控制器,把电压/电流误差信号转换为脉宽调制信号,用以驱动两个N沟道MOSFET管,经同步整流、滤波器滤波后,得到所需的输出信号。
MAX1647的输出特性曲线如图2所示,当输出电压小于预置电压V0时,电流调整环发挥作用,输出是恒流模式;当负载的电压到达预置电压V0以后,电流调整环停止作用,电压调整环开始工作,这时输出为恒压模式。恒流模式时,CCV端口输出的电压误差信号被钳位在CCI端口最小电压值80mV以上,这样即可防止更新预置电流值时负载电流溢出,又可防止从恒流模式转换为恒压模式时,出现过冲电现象。在恒压模式时,钳位电路也可起到相类似的作用。
3 激光器电源的设计
根据实际需要设计的激光器电源输出为60A/150V,恒流、恒压及相互之间能自动转换。
3.1 整体电路设计
整体电路设计框图如图3所示。
MAX1647电源管理芯片是整个系统的控制核心部分,它完成恒流、恒压及相互之间自动转换的功能。但MAX1647的最大输出4A,不足以达到设计要求,因此,把MAX1647的输出信号经由达林顿管组成的改进型线性主电路,进行电流、电压放大。在线性主电路中,由达林顿管、霍尔电流/电压传感器、MAX1647、及光耦隔离一起构成了电流主调环,保证恒流、恒压功能。同时增加了由达林顿管、误差电压放大、晶闸管控制模块、晶闸管降压整流构成的电压从调环,它把达林顿管压降与参考电压进行比较放大,以控制晶闸管触发模块,使达林顿管压降保持在参考电压附近,大大地降低了达林顿管上的功耗,使电源整体输出稳定性、效率等有显著的提高;利用单片机实现电源与机械传动部分、水冷系统部分以及计算机软件控制部分的有机结合;利用高性能的霍尔电流、电压传感器实现对输出电流、电压的实时检测;液晶显示模块实时显示输出电压、电流和有关状态;整个电路通过光耦和传感器实现隔离。
3.2 利用89C51对MAX1647进行设置
89C51通过SMBUS的READ WORD和WRITE WORD协议与MAX1647进行双向通信,实现参数的设置。图4为SMBUS总线访问时序图。
1 引言
随着二极管泵浦全固态激光器相关技术的不断发展,它在工业、国防科研、生物医学工程等领域的应用越来越广泛,对其输出功率、可靠性要求也不断提高。作为二极管泵浦全固态激光器的重要组成部分的电源,其可靠性、稳定性也就显得格外重要。二极管泵浦全固态激光器的电源功率较大,输出为大电流、低电压,工作脉冲频率较高(可达1kHz),输出电流、电压的稳定性要求很高。微小的电流扰动将影响激光器的出光质量,不当的保护可能引起巨大的损失。针对这些特点,我们选择功能强大的电源管理芯片MAX1647作为整个系统控制的核心部分,设计出完全满足要求的大功率激光器电源。
2 MAX1647电源管理芯片介绍
MAX1647是MAXIM公司的新型电源管理芯片,其内部结构如图1所示。它包括两个调整环,即一个电压调整环与一个电流调整环,实现恒流与恒压功能及相互之间的自动转换;并采用INTEL系统管理总线(SMBUS)接口,其中内部有一个6位和一个10位的D/A转换器分别用于电流和电压的预置;另外,MAX1647提供了最大为4A的电流输出。
在MAX1647的电压调整环中,通过SMBUS总线,经内部10位DAC设置预置电压,负载电压与预置电压通过GMV误差放大器进行比较放大后的误差信号输出到CCV端口,然后送到一个由二选一电路组成的恒流/恒压自动转换电路的一个端子上,其中由CCV端口输出的误差信号由内部钳位电路限制在1/4到3/4参考电压之间的;与电压调整环工作原理相类似,被钳位的电流误差信号由CCI端口送到自动转换电路的另一个端子上;利用PWM控制器,把电压/电流误差信号转换为脉宽调制信号,用以驱动两个N沟道MOSFET管,经同步整流、滤波器滤波后,得到所需的输出信号。
MAX1647的输出特性曲线如图2所示,当输出电压小于预置电压V0时,电流调整环发挥作用,输出是恒流模式;当负载的电压到达预置电压V0以后,电流调整环停止作用,电压调整环开始工作,这时输出为恒压模式。恒流模式时,CCV端口输出的电压误差信号被钳位在CCI端口最小电压值80mV以上,这样即可防止更新预置电流值时负载电流溢出,又可防止从恒流模式转换为恒压模式时,出现过冲电现象。在恒压模式时,钳位电路也可起到相类似的作用。
3 激光器电源的设计
根据实际需要设计的激光器电源输出为60A/150V,恒流、恒压及相互之间能自动转换。
3.1 整体电路设计
整体电路设计框图如图3所示。
MAX1647电源管理芯片是整个系统的控制核心部分,它完成恒流、恒压及相互之间自动转换的功能。但MAX1647的最大输出4A,不足以达到设计要求,因此,把MAX1647的输出信号经由达林顿管组成的改进型线性主电路,进行电流、电压放大。在线性主电路中,由达林顿管、霍尔电流/电压传感器、MAX1647、及光耦隔离一起构成了电流主调环,保证恒流、恒压功能。同时增加了由达林顿管、误差电压放大、晶闸管控制模块、晶闸管降压整流构成的电压从调环,它把达林顿管压降与参考电压进行比较放大,以控制晶闸管触发模块,使达林顿管压降保持在参考电压附近,大大地降低了达林顿管上的功耗,使电源整体输出稳定性、效率等有显著的提高;利用单片机实现电源与机械传动部分、水冷系统部分以及计算机软件控制部分的有机结合;利用高性能的霍尔电流、电压传感器实现对输出电流、电压的实时检测;液晶显示模块实时显示输出电压、电流和有关状态;整个电路通过光耦和传感器实现隔离。
3.2 利用89C51对MAX1647进行设置
89C51通过SMBUS的READ WORD和WRITE WORD协议与MAX1647进行双向通信,实现参数的设置。图4为SMBUS总线访问时序图。
上一篇:有源功率因数校正技术及发展趋势