智能天线为无线局域网添加精彩
发布时间:2008/5/27 0:00:00 访问次数:944
    
    拥有固定波束和自适应天线阵的智能天线能够为wlan(无线局域网)提供范围扩大、多径分集、干扰抑制和增加的容量等功能。
    随着基于ieee 802.11b(wi-fi)标准的廉价的、每秒速度达11mb的高性能产品的深入普及,wlan已经成为家庭和企业不可分割的一部分。仅举几个例子:无论你在家里、办公室、机场、火车上和零售商店中,到处都有可以接入wlan的接入点。
    wlan爆炸式增长
    wlan技术爆炸式增长的原因在于那些目前可以买得到的使用方便的设备。厂商直接把wi-fi技术作为便携式计算机和通信器等产品的标准配置也推动了wlan技术的增长。无数的报告详细介绍了wlan和wi-fi的增长,所有的迹象都表明要继续推进移动性和无线连接性的发展。
    然而,尽管wlan看起来无处不在并且非常现实,但是,许多因素限制了无线通信系统的性能和容量。这些因素包括:有限的频谱、时延扩展、同信道干扰和多径衰减。这些因素将导致最终用户会遇到整个音域的服务质量问题,包括从根本就没有声音到极快的传输速度等许多问题。最终用户可以在距离接入点很远的地方使用这个技术,可以在一个墙的后面、在一个“死角”或者使用一台笔记本电脑工作。事实上,网络管理员经常会发现wlan在实际应用时往往达不到预期的传输距离。
    市场营销资料往往都是根据厂商在理想环境中的技术规范编写的。例如,一家厂商可能会指出,这个无线系统的传输距离是300英尺。然而,正如常识显示的那样,墙壁、桌子和文件柜等障碍物都可以减少无线通信在某个方向的传输距离,使无线通信在一些方向的覆盖范围不一致。
    
     ·空间分集--将天线从空间上隔开。在一个严格的多经环境中,例如在室内和手机附近,仅需要 λ/4的空间就可获得低衰落相关性。
    
    ·极化分集--使用双极化(水平和垂直)能够让一个物理天线用于双信号输入(每一个极使用不同的传输方式)。
    
    ·方向图分集--使用配置方向图的天线单元。
    
    这三种分集方式的结合能够允许在pcmcia卡或者手机等小型设备上使用大量的天线,而且性能比较理想。
    
    自适应天线阵还有很多技术组合。最简单和最普通的(多数用于802.11b系统,许多用于802.11a/g系统)组合是选择分集。在这里,可选择信号接收能力最强的天线用于输出的信号。目前,这种技术应用于许多wlan接收机中。然而,这个技术不使用全部的接收的信号功率,因此,在改善一个天线的分贝增益方面的作用是有限的。
    
    用于增加信号传输距离和提高覆盖均匀度的最佳技术是mrc(最高比结合)。使用这种技术,每一个天线的信号都要经过加权处理并且合并在一起以便最大限度地提高输出信噪比。然后,这种波束赋形加权将是信道传输特点的复杂的结合。也就是说,接收的信号是同相位的,信号增益要根据接收到的信号的强度进行调整。这个技术能在瑞利衰减(rayleigh fading)环境中以m分集增益的方式提供m增益。需要指出的是,产生这种波束赋形加权的一个方法是简单地把输出信号与每个天线接收的信号关联起来。这种方法也被称作盲技术,因为自适应天线阵基本上把接收到的全部信号的信噪比都提高到最大的程度。这个好处是同样的波束成形器能够用于任何类型的无线信号,如802.11b/g/a,而且不需要对接收到的信号进行解调。
    
    在多径环境中,当发射机和接收机之间各种路径上出现的传播延迟的差异相当于符号周期的时候,频率选择性衰落将导致符号间干扰,从而降低性能。为了克服这种损失,一般可以使用暂时均衡或者正交频分复用(ofdm)技术。这两种技术已经以不同的方式在802.11设备中应用了。在这种情况下,空间处理(也就是以前所说的自适应天线阵)之后的暂时均衡和ofdm调制并不是最佳方案。要得到最佳性能,需要联合使用空间-暂时处理的方法。不过,如果延迟扩散的范围很小,使用前面提到的技术通常也可以达到接近最佳的性能。
    
    模拟或者数字处理
    
    智能天线的加权与结合以及加权的形成可以通过模拟或者数字处理的方式实现。对于数字处理,每一个天线接收的模拟信号都要降频转换到基带上,然后再转换成数字信号。接下来使用数字化的信号计
    
    拥有固定波束和自适应天线阵的智能天线能够为wlan(无线局域网)提供范围扩大、多径分集、干扰抑制和增加的容量等功能。
    随着基于ieee 802.11b(wi-fi)标准的廉价的、每秒速度达11mb的高性能产品的深入普及,wlan已经成为家庭和企业不可分割的一部分。仅举几个例子:无论你在家里、办公室、机场、火车上和零售商店中,到处都有可以接入wlan的接入点。
    wlan爆炸式增长
    wlan技术爆炸式增长的原因在于那些目前可以买得到的使用方便的设备。厂商直接把wi-fi技术作为便携式计算机和通信器等产品的标准配置也推动了wlan技术的增长。无数的报告详细介绍了wlan和wi-fi的增长,所有的迹象都表明要继续推进移动性和无线连接性的发展。
    然而,尽管wlan看起来无处不在并且非常现实,但是,许多因素限制了无线通信系统的性能和容量。这些因素包括:有限的频谱、时延扩展、同信道干扰和多径衰减。这些因素将导致最终用户会遇到整个音域的服务质量问题,包括从根本就没有声音到极快的传输速度等许多问题。最终用户可以在距离接入点很远的地方使用这个技术,可以在一个墙的后面、在一个“死角”或者使用一台笔记本电脑工作。事实上,网络管理员经常会发现wlan在实际应用时往往达不到预期的传输距离。
    市场营销资料往往都是根据厂商在理想环境中的技术规范编写的。例如,一家厂商可能会指出,这个无线系统的传输距离是300英尺。然而,正如常识显示的那样,墙壁、桌子和文件柜等障碍物都可以减少无线通信在某个方向的传输距离,使无线通信在一些方向的覆盖范围不一致。
    
     ·空间分集--将天线从空间上隔开。在一个严格的多经环境中,例如在室内和手机附近,仅需要 λ/4的空间就可获得低衰落相关性。
    
    ·极化分集--使用双极化(水平和垂直)能够让一个物理天线用于双信号输入(每一个极使用不同的传输方式)。
    
    ·方向图分集--使用配置方向图的天线单元。
    
    这三种分集方式的结合能够允许在pcmcia卡或者手机等小型设备上使用大量的天线,而且性能比较理想。
    
    自适应天线阵还有很多技术组合。最简单和最普通的(多数用于802.11b系统,许多用于802.11a/g系统)组合是选择分集。在这里,可选择信号接收能力最强的天线用于输出的信号。目前,这种技术应用于许多wlan接收机中。然而,这个技术不使用全部的接收的信号功率,因此,在改善一个天线的分贝增益方面的作用是有限的。
    
    用于增加信号传输距离和提高覆盖均匀度的最佳技术是mrc(最高比结合)。使用这种技术,每一个天线的信号都要经过加权处理并且合并在一起以便最大限度地提高输出信噪比。然后,这种波束赋形加权将是信道传输特点的复杂的结合。也就是说,接收的信号是同相位的,信号增益要根据接收到的信号的强度进行调整。这个技术能在瑞利衰减(rayleigh fading)环境中以m分集增益的方式提供m增益。需要指出的是,产生这种波束赋形加权的一个方法是简单地把输出信号与每个天线接收的信号关联起来。这种方法也被称作盲技术,因为自适应天线阵基本上把接收到的全部信号的信噪比都提高到最大的程度。这个好处是同样的波束成形器能够用于任何类型的无线信号,如802.11b/g/a,而且不需要对接收到的信号进行解调。
    
    在多径环境中,当发射机和接收机之间各种路径上出现的传播延迟的差异相当于符号周期的时候,频率选择性衰落将导致符号间干扰,从而降低性能。为了克服这种损失,一般可以使用暂时均衡或者正交频分复用(ofdm)技术。这两种技术已经以不同的方式在802.11设备中应用了。在这种情况下,空间处理(也就是以前所说的自适应天线阵)之后的暂时均衡和ofdm调制并不是最佳方案。要得到最佳性能,需要联合使用空间-暂时处理的方法。不过,如果延迟扩散的范围很小,使用前面提到的技术通常也可以达到接近最佳的性能。
    
    模拟或者数字处理
    
    智能天线的加权与结合以及加权的形成可以通过模拟或者数字处理的方式实现。对于数字处理,每一个天线接收的模拟信号都要降频转换到基带上,然后再转换成数字信号。接下来使用数字化的信号计